...
首页> 外文期刊>Indian Journal of Pure & Applied Physics >Graphene: Potential material for nanoelectronics applications
【24h】

Graphene: Potential material for nanoelectronics applications

机译:石墨烯:纳米电子应用的潜在材料

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to Moore's law and the advancements in microelectronics, the industry is shifting to nanoelectronics. The materials used for nanoelectronics applications are termed as nanomaterials recognized as the one which has at least one dimension less than 100 nm. Nanoelectronics allows bottom-up approach in contrast to the top-down approach adopted in microelectronics. So in nanoelectronics, the approach is to design systems using nanomaterials as basic building blocks. The importance of nanoelectronics is that different nanomaterials exhibit certain unusual properties not available at the micro scale. These unusual properties of the nanomaterials are utilized in a wide range of electronic applications like sensors, FETs, photovoltaic cells and many other exotic electronic devices applications. Graphene is one of the most recently discovered nanomaterial known for its exceptional mechanical, electrical, optical properties which are not found in any other material in the world. Being the thinnest, strongest, stiffest and the most conducting material in the world, therefore, its various applications are postulated in this review paper. A lot of research is being done around the world to find a graphene synthesis method which is facile, easy and economical so that graphene can be produced at large scale with least defects. Graphene is ready to replace silicon in almost all the semiconductor devices in order to enhance their capabilities. Till now graphene has been used in electronics applications like Li-ion batteries, photovoltaic cells, supercapacitors etc. In the present paper, various methods of synthesizing graphene, its properties, and work being carried out in the researcher's laboratory is presented.
机译:由于摩尔定律和微电子学的进步,该行业正在向纳米电子学转移。用于纳米电子应用的材料称为被认为是至少具有小于100nm的一维尺寸的纳米材料。与微电子学中采用的自上而下方法相反,纳米电子学允许自下而上的方法。因此,在纳米电子学中,方法是使用纳米材料作为基本构件来设计系统。纳米电子学的重要性在于,不同的纳米材料展现出某些微尺度上无法获得的异常特性。纳米材料的这些不同寻常的特性被广泛用于电子应用中,例如传感器,FET,光伏电池和许多其他奇特的电子设备应用中。石墨烯是最近发现的纳米材料之一,以其卓越的机械,电,光学特性而闻名,这是世界上任何其他材料中都没有的。因此,作为世界上最薄,最坚固,最坚硬且导电性最强的材料,本评论文件假定了它的各种应用。在世界范围内进行了大量研究,以找到一种简便,简便且经济的石墨烯合成方法,从而可以大规模生产石墨烯且缺陷最少。石墨烯已准备好替代几乎所有半导体器件中的硅,以增强其性能。迄今为止,石墨烯已被用于锂离子电池,光伏电池,超级电容器等电子应用中。在本文中,提出了各种合成石墨烯的方法,其性质以及在研究人员的实验室中进行的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号