...
首页> 外文期刊>British Corrosion Journal >Current densities for cathodic protection of steel in tropical sea water
【24h】

Current densities for cathodic protection of steel in tropical sea water

机译:热带海水中钢阴极保护的电流密度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mass losses have been measured for sacrificial anodes used for the cathodic protection of steel structures in tropical sea water off the coast of Singapore. By converting these mass losses to average current density values over the exposure time,information has been provided which may be used to predict the mass of sacrificial anodes needed to ensure adequate cathodic protection during the design life of steel structures in this environment. The average current density for cathodic protection ofsteel during the first day of exposure in Singapore sea water was found to lie in the range 711-2134 mA m{sup}-2, depending on the sea water current, anode type (zinc or aluminium), steel type (carbon content), and depth of exposure (2 or 12 m). Theaverage current density fell with increasing time of exposure to 114.0, 58.0, and 19.1 mA m{sup}-2 for 2 months, 9 months, and 13 years exposure respectively. Equations expressing the average current density as a function of time for different depths inSingapore sea water can be used to calculate the initial, final, and mean current densities for a given cathodic protection design life. For a 10 year cathodic protection design life, the initial, mean, and final current densities are found to be 92.2,21.1, and 12.2 mA m{sup}-2 for 2 m depth and 81.2, 20.2, and 12.3 mA m{sup}-2 for 12 m depth. For estimating anode weight a higher value of mean current density should be used because additional protection current is required after the removal of marinegrowths or the breakdown of cathodic protection caused by storms, underwater inspection, mechanical damage, etc. Similarly, a higher final current density should be used for cathodic protection design because at the end of the design life there is ahigher possibility of breakdown of protection, coating deterioration and exposure of more bare steel, and more disconnection of anodes from the structure owing to aging.
机译:已经测量了牺牲阳极的质量损失,该牺牲阳极用于新加坡沿海热带海水中钢结构的阴极保护。通过将这些质量损失转换为暴露时间内的平均电流密度值,已提供了可用于预测在这种环境下在钢结构设计寿命期间确保适当阴极保护所需的牺牲阳极质量的信息。发现在新加坡海水中进行阴极阴极保护的第一天,平均电流密度在711-2134 mA m {sup} -2范围内,具体取决于海水电流,阳极类型(锌或铝) ,钢材类型(碳含量)和暴露深度(2或12 m)。平均电流密度随暴露时间的增加而下降,分别暴露于11个月,9个月和13年的114.0、58.0和19.1 mA m {sup} -2。将新加坡海水中不同深度的平均电流密度表示为时间的函数的方程式可用于计算给定阴极保护设计寿命的初始,最终和平均电流密度。对于10年的阴极保护设计寿命,对于2 m深度和81.2、20.2和12.3 mA m {sup,发现初始,平均和最终电流密度分别为92.2、21.1和12.2 mA m {sup} -2 } -2,深度为12 m。为了估计阳极重量,应使用较高的平均电流密度值,因为在去除海藻生长或暴风雨,水下检查,机械损坏等导致的阴极保护失效之后,需要额外的保护电流。类似地,最终电流密度也较高应将其用于阴极保护设计,因为在设计寿命结束时,保护的击穿,涂层变质和更多裸钢暴露的可能性更高,并且由于老化而使阳极与结构的连接断开的可能性更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号