首页> 外文期刊>Annual Review of Microbiology >Anaerobic Oxidation of Methane: Progress with an Unknown Process
【24h】

Anaerobic Oxidation of Methane: Progress with an Unknown Process

机译:甲烷的厌氧氧化:未知过程的进展

获取原文
获取原文并翻译 | 示例
           

摘要

Methane is the most abundant hydrocarbon in the atmosphere, and it is in important greenhouse gas, which has so far contributed in estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction:CH4 + SO42- -> HCO3- + HS- + H2O.This review summarizes what is known and unknown about AOM oil earth and its key catalysts, the ANME clades and their bacterial partners.
机译:甲烷是大气中最丰富的碳氢化合物,也是重要的温室气体之一,迄今为止,甲烷占工业化后全球变暖的20%。在整个地球历史上,大量的生物地球化学研究都集中在全球甲烷通量变化的原因和影响上,但是对潜在的微生物过程及其关键因素仍然知之甚少。这是一个令人不安的知识缺口,因为全球每年甲烷产量的85%和其消耗量的60%都是基于微生物过程。有限多样性的微生物中只有三个关键的功能组调节着甲烷在地球上的通量,即好氧甲烷营养细菌,产甲烷的古细菌及其近亲厌氧甲烷营养古细菌(ANME)。 ANME代表Euryarchaeota内的特殊下降线,并且似乎仅通过甲烷的厌氧氧化(AOM)获得能量,根据净反应,硫酸盐作为最终电子受体:CH4 + SO42--> HCO3- + HS-这篇综述总结了关于AOM油土及其关键催化剂,ANME枝及其细菌伴侣的已知和未知。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号