首页> 外文期刊>Atmospheric chemistry and physics >Total ozone trends and variability during 1979–2012 from merged data sets of various satellites
【24h】

Total ozone trends and variability during 1979–2012 from merged data sets of various satellites

机译:1979-2012年期间各种卫星合并数据集得出的臭氧总量趋势和变化性

获取原文
获取原文并翻译 | 示例
       

摘要

The study presents a long-term statistical trend analysis of total ozone data sets obtained from various satellites. A multi-variate linear regression was applied to annual mean zonal mean data using various natural and anthropogenic explanatory variables that represent dynamical and chemical processes which modify global ozone distributions in a changing climate. The study investigated the magnitude and zonal distribution of the different atmospheric chemical and dynamical factors contributing to long-term total ozone changes. The regression model included the equivalent effective stratospheric chlorine (EESC), the 11-year solar cycle, the quasi-biennial oscillation (QBO), stratospheric aerosol loading describing the effects from major volcanic eruptions, the El Ni?o–Southern Oscillation (ENSO), the Arctic and Antarctic oscillation (AO/AAO), and accumulated eddy heat flux (EHF), the latter representing changes due to the Brewer–Dobson circulation. The total ozone column data set used here comprises the Solar Backscater Ultraviolet SBUV/SBUV-2 merged ozone data set (MOD) V8.6, the merged data set of the Solar Backscaterr Ultraviolet, the Total Ozone Mapping Spectrometer and the Ozone Monitoring Instrument SBUV/TOMS/OMI (1979–2012) MOD V8.0 and the merged data set of the Global Ozone Monitoring Experiment, the Scanning Imaging Absorption spectroMeter for Atmospheric ChartograpHY and the Global Ozone Monitoring Experiment 2 GOME/SCIAMACHY/GOME-2 (GSG) (1995–2012). The trend analysis was performed for twentysix 5° wide latitude bands from 65°S to 65° N, and the analysis explained most of the ozone variability to within 70 to 90 %. The results show that QBO dominates the ozone variability in the tropics (±7 DU) while at higher latitudes, the dynamical indices, AO/AAO and eddy heat flux, have substantial influence on total ozone variations by up to ±10 DU. The contribution from volcanic aerosols is only prominent during the major eruption periods (El Chichón and Mt. Pinatubo), and together with the ENSO signal, is more evident in the Northern Hemisphere. The signature of the solar cycle covers all latitudes and contributes about 10DU from solar maximum to solar minimum. EESC is found to be a main contributor to the long-term ozone decline and the trend changes after the end of the 1990s. From the EESC fits, statistically significant upward trends after 1997 were found in the extratropics, which points at the slowing of ozone decline and the onset of ozone recovery. The EESC based trends are compared with the trends obtained from the statistical piecewise linear trend (PWLT) model (known as hockey stick) with a turnaround in 1997 to examine the differences between both approaches. In case of the SBUV merged V8.6 data the EESC and PWLT trends before and after 1997 are in good agreement (within 2 σ), however, the positive post-1997 linear trends from the PWLT regression are not significant within 2 σ. A sensitivity study is carried out by comparing the regression results, using SBUV/SBUV-2 MOD V8.6 merged time series (1979–2012) and a merged data set combining SBUV/SBUV-2 (1979–June 1995) and GOME/SCIAMACHY/GOME-2 ("GSG") WFDOAS (Weighting Function DOAS) (July 1995–2012) as well as SBUV/TOMS/OMI MOD V8.0 (1979–2012) in the regression analysis in order to investigate the uncertainty in the long-term trends due to different ozone data sets and data versions. Replacing the late SBUV/SBUV-2 merged data record with GSG data (unscaled and adjusted) leads to very similar results demonstrating the high consistency between satellite data sets. However, the comparison of the new SBUV/SBUV-2 MOD V8.6 with the MOD V8.0 and MOD8.6/GSG data showed somewhat smaller sensitivities with regard to several proxies as well as the linear EESC trends. On the other hand, the PWLT trends after 1997 show some differences, however, within the 2σ error bars the PWLT trends agree with each other for all three data sets.
机译:这项研究提出了从各种卫星获得的总臭氧数据集的长期统计趋势分析。使用各种自然和人为解释变量将多元线性回归应用于年平均纬向平均值数据,这些变量代表动态和化学过程,这些过程在变化的气候中改变了全球臭氧的分布。该研究调查了造成长期总臭氧变化的不同大气化学和动力学因素的大小和区域分布。回归模型包括等效的平流层有效氯(EESC),11年太阳周期,准两年一次振荡(QBO),描述主要火山爆发影响的平流层气溶胶负荷,厄尔尼诺-南方涛动(ENSO) ),北极和南极振荡(AO / AAO)以及累积的涡流热通量(EHF),后者表示由于Brewer-Dobson循环引起的变化。此处使用的总臭氧柱数据集包括Solar Backscater紫外线SBUV / SBUV-2合并臭氧数据集(MOD)V8.6,Solar Backscaterr紫外线的合并数据集,总臭氧图谱仪和臭氧监测仪器SBUV / TOMS / OMI(1979–2012)MOD V8.0以及全球臭氧监测实验,大气ChartograpHY的扫描成像吸收光谱仪和全球臭氧监测实验的合并数据集2 GOME / SCIAMACHY / GOME-2(GSG) (1995年至2012年)。对从65°S到65°N的26个5°宽纬度带进行了趋势分析,该分析将大多数臭氧变化率解释为在70%至90%之内。结果表明,QBO在热带地区(±7 DU)占主导地位,而在较高纬度,动力学指数,AO / AAO和涡流通量对总臭氧变化的影响最大至±10 DU。火山气溶胶的贡献仅在主要喷发时期(ElChichón和Pinatubo山)才突出,并且与ENSO信号一起在北半球更为明显。太阳周期的特征涵盖所有纬度,从太阳最大到太阳最小大约占10DU。人们发现,EESC是造成臭氧长期下降的主要因素,其趋势在1990年代末之后发生了变化。从EESC拟合中,在温带地区发现了1997年之后的统计上显着的上升趋势,这表明臭氧下降的速度减慢了,并且开始了臭氧的恢复。将基于EESC的趋势与从统计分段线性趋势(PWLT)模型(称为曲棍球棒)获得的趋势进行比较,并在1997年进行了周转,以检验两种方法之间的差异。对于SBUV合并的V8.6数据,1997年前和之后的EESC和PWLT趋势吻合良好(在2σ之内),但是,从PWLT回归得出的1997年后线性正趋势在2σ之内并不显着。通过比较回归结果,使用SBUV / SBUV-2 MOD V8.6合并时间序列(1979-2012)和结合SBUV / SBUV-2(1979-June 1995)和GOME /为了调查不确定性,SCIAMACHY / GOME-2(GSG)WFDOAS(加权函数DOAS)(1995年7月至2012年)以及SBUV / TOMS / OMI MOD V8.0(1979年至2012年)进行了回归分析。由于臭氧数据集和数据版本不同而产生的长期趋势。将较晚的SBUV / SBUV-2合并数据记录替换为GSG数据(未缩放和已调整)会导致非常相似的结果,表明卫星数据集之间的高度一致性。但是,将新的SBUV / SBUV-2 MOD V8.6与MOD V8.0和MOD8.6 / GSG数据进行的比较显示,对于几种代理以及线性EESC趋势,灵敏度略低。另一方面,1997年之后的PWLT趋势显示出一些差异,但是,对于所有三个数据集,在2σ误差线内,PWLT趋势彼此一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号