...
首页> 外文期刊>Atmospheric chemistry and physics >Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions
【24h】

Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

机译:使用集总模型与明确的气相动力学机制和气溶胶相反应相结合的模拟芳香族SOA形成

获取原文
获取原文并翻译 | 示例
           

摘要

The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. The model was evaluated with aromatic SOA data produced from the photooxidation of toluene and 1,3,5- trimethylbenzene (135-TMB) under various concentrations of NO_x and SO_2 using an outdoor reactor (University of Florida Atmospheric PHotochemical Outdoor Reactor (UFAPHOR) chamber). When inorganic species (sulfate, ammonium and water) are present in aerosol, the prediction of both toluene SOA and 135-TMB SOA, in which the oxygen-tocarbon (O: C) ratio is lower than 0.62, are approached under the assumption of a complete organic/electrolyte-phase separation below a certain relative humidity. An explicit gaskinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on their volatility (6 levels) and reactivity (5 levels) and exploited to construct the stoichiometric coefficient (α_(i,j)) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the α_(i,j) matrix as a function of NO_x improved the evaluation of NO_x effects on aromatic SOA. The total amount of organic matter (OM_T) is predicted by two modules in the UNIPAR model: OM_P by a partitioning process and OM_(AR) by aerosol-phase reactions. The OMAR module predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model reasonably simulates SOA formation under various aerosol acidities, NO_x concentrations, humidities and temperatures. Furthermore, the OS fractions in the SOA predicted by the model were in good agreement with the experimentally measured OS fractions.
机译:已开发出统一分配气溶胶相反应(UNIPAR)模型,以预测通过多相反应形成的次级有机气溶胶(SOA)。使用室外反应器(佛罗里达大学大气光化学室外反应器(UFAPHOR)),在不同浓度的NO_x和SO_2下,利用甲苯和1,3,5-三甲基苯(135-TMB)的光氧化产生的芳族SOA数据评估模型。 )。当气溶胶中存在无机物质(硫酸盐,铵盐和水)时,在以下假设的基础上,可以预测甲苯SOA和135-TMB SOA的预测,其中氧碳比(O:C)低于0.62。在一定的相对湿度以下完全有机/电解质相分离。采用显式气体动力学模型来表达芳烃的气相氧化。气相产物根据其挥发性(6个水平)和反应性(5个水平)进行分组,并用于构建化学计量系数(α_(i,j))矩阵,该矩阵用于描述有机化合物中有机化合物的浓度。多相的。 α_(i,j)矩阵作为NO_x函数的权重改善了NO_x对芳族SOA影响的评估。通过UNIPAR模型中的两个模块预测有机物的总量(OM_T):通过分配过程的OM_P和通过气溶胶相反应的OM_(AR)。 OMAR模块可预测有机化合物的多相反应,例如低聚,酸催化反应和有机硫酸盐(OS)的形成。该模型合理地模拟了各种气溶胶酸度,NO_x浓度,湿度和温度下的SOA形成。此外,模型预测的SOA中的OS分数与实验测量的OS分数非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号