...
首页> 外文期刊>Atmospheric chemistry and physics >Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations
【24h】

Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations

机译:使用惠斯勒山测量和GEOS-Chem-TOMAS模拟的气溶胶粒径分布的源归因和模型评估

获取原文
获取原文并翻译 | 示例
           

摘要

Remote and free-tropospheric aerosols represent a large fraction of the climatic influence of aerosols; however, aerosol in these regions is less characterized than those polluted boundary layers. We evaluate aerosol size distributions predicted by the GEOS-Chem-TOMAS global chemical transport model with online aerosol microphysics using measurements from the peak of Whistler Mountain, British Columbia, Canada (2182 ma.s.l., hereafter referred to as Whistler Peak). We evaluate the model for predictions of aerosol number, size, and composition during periods of free-tropospheric (FT) and boundary-layer (BL) influence at "coarse" 4 degrees x 5 degrees and "nested" 0.5 degrees x 0.667 degrees resolutions by developing simple FT/BL filtering techniques. We find that using temperature as a proxy for upslope flow (BL influence) improved the model-measurement comparisons. The best threshold temperature was around 2 degrees C for the coarse simulations and around 6 degrees C for the nested simulations, with temperatures warmer than the threshold indicating boundary-layer air. Additionally, the site was increasingly likely to be in cloud when the measured relative humidity (RH) was above 90 %, so we do not compare the modeled and measured size distributions during these periods. With the inclusion of these temperature and RH filtering techniques, the model-measurement comparisons improved significantly. The slope of the regression for N80 (the total number of particles with particle diameter, Dp, > 80 nm) in the nested simulations increased from 0.09 to 0.65, R-2 increased from 0.04 to 0.46, and log-mean bias improved from 0.95 to 0.07. We also perform simulations at the nested resolution without Asian anthropogenic emissions and without biomass-burning emissions to quantify the contribution of these sources to aerosols at Whistler Peak (through comparison with simulations with these emissions on). The long-range transport of Asian anthropogenic aerosol was found to be significant throughout all particle number concentrations, and increased N80 by more than 50%, while decreasing the number of smaller particles because of suppression of new-particle formation and enhanced coagulation sink. Similarly, biomass burning influenced Whistler Peak during summer months, with an increase in N80 exceeding 5000 cm(-3). Occasionally, Whistler Peak experienced N80 > 1000 cm(-3) without significant influence from Asian anthropogenic or biomass-burning aerosol. Air masses were advected at low elevations through forested valleys during times when temperature and downwelling insolation were high, ideal conditions for formation of large sources of low-volatility biogenic secondary organic aerosol (SOA). This condensable material increased particle growth and hence N80. The low-cost filtering techniques and source apportionment used in this study can be used in other global models to give insight into the sources and processes that shape the aerosol at mountain sites, leading to a better understanding of mountain meteorology and chemistry.
机译:遥远的和对流层的气溶胶占气溶胶气候影响的很大一部分。然而,这些区域的气溶胶特征不如那些污染的边界层。我们使用来自加拿大不列颠哥伦比亚省惠斯勒山峰(2182 ma.s.l.,以下称为惠斯勒峰)的测量结果,通过在线气溶胶微物理学评估由GEOS-Chem-TOMAS全球化学迁移模型预测的气溶胶粒径分布。我们评估该模型,以预测在“粗” 4度x 5度和“嵌套” 0.5度x 0.667度分辨率下自由对流层(FT)和边界层(BL)影响期间的气溶胶数量,大小和组成通过开发简单的FT / BL过滤技术。我们发现使用温度作为上升流(BL影响)的代理可以改善模型测量的比较。对于粗略模拟,最佳阈值温度约为2摄氏度,对于嵌套模拟,最佳阈值温度约为6摄氏度,温度高于指示边界层空气的阈值。此外,当测得的相对湿度(RH)超过90%时,该地点越来越可能处于云中,因此我们在这两个时期内未比较建模和测得的尺寸分布。通过包括这些温度和RH过滤技术,模型测量的比较得到了显着改善。嵌套模拟中N80(粒径为Dp,> 80 nm的粒子总数)的回归斜率从0.09增加到0.65,R-2从0.04增加到0.46,对数均值偏差从0.95改善至0.07。我们还以嵌套分辨率执行模拟,没有亚洲人为排放物,也没有燃烧生物质的排放物,以量化这些源对惠斯勒峰气溶胶的贡献(通过与启用这些排放物的模拟进行比较)。发现亚洲人为气溶胶的远距离运输在所有颗粒数浓度下均很显着,N80增加了50%以上,同时由于抑制了新颗粒的形成和增强的凝结沉降而减少了较小颗粒的数目。同样,在夏季,生物量燃烧会影响惠斯勒峰,N80的增加超过5000 cm(-3)。有时,惠斯勒峰经历的N80> 1000 cm(-3)不受亚洲人为或燃烧生物质的气溶胶的重大影响。在气温和下涌日射量很高的时期,气团在低海拔处通过森林山谷平流,这是形成大量低挥发性生物成因有机有机气溶胶(SOA)的理想条件。这种可凝结的物质增加了颗粒的生长,从而增加了N80。这项研究中使用的低成本过滤技术和源分配可以在其他全球模型中使用,以深入了解形成山区气溶胶的源和过程,从而更好地了解山区的气象和化学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号