...
首页> 外文期刊>Atmospheric chemistry and physics >The CO_2 inhibition of terrestrial isoprene emission significantly affects future ozone projections
【24h】

The CO_2 inhibition of terrestrial isoprene emission significantly affects future ozone projections

机译:CO_2对陆地异戊二烯排放的抑制作用会严重影响未来的臭氧预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Simulations of future tropospheric composition often include substantial increases in biogenic isoprene emissions arising from the Arrhenius-like leaf emission response and warmer surface temperatures, and from enhanced vegetation productivity in response to temperature and atmospheric CO_2 concentration. However, a number of recent laboratory and field data have suggested a direct inhibition of leaf isoprene production by increasing atmospheric CO_2 concentration, notwithstanding isoprene being produced from precursor molecules that include some of the primary products of carbon assimilation. The cellular mechanism that underlies the decoupling of leaf photosynthesis and isoprene production still awaits a full explanation but accounting for this observation in a dynamic vegetation model that contains a semi-mechanistic treatment of isoprene emissions has been shown to change future global isoprene emission estimates notably. Here we use these estimates in conjunction with a chemistry-climate model to compare the effects of isoprene simulations without and with a direct CO_2-inhibition on late 21st century O_3 and OH levels. The impact on surface O_3 was significant. Including the CO_2-inhibition of isoprene resulted in opposing responses in polluted (O_3 decreases of up to 10 ppbv) vs. less polluted (O_3 increases of up to 10 ppbv) source regions, due to isoprene nitrate and peroxy acetyl nitrate (PAN) chemistry. OH concentration increased with relatively lower future isoprene emissions, decreasing methane lifetime by ~7 months (6.6%). Our simulations underline the large uncertainties in future chemistry and climate studies due to biogenic emission patterns and emphasize the problems of using globally averaged climate metrics (such as global radiative forcing) to quantify the atmospheric impact of reactive, heterogeneously distributed substances.
机译:未来对流层组成的模拟通常包括大量生物源异戊二烯排放量的增加,这是由于类阿雷尼乌斯叶片排放响应和地表温度升高,以及响应温度和大气CO_2浓度而提高的植被生产力引起的。然而,尽管来自包括一些碳同化的一些主要产物的前体分子产生了异戊二烯,但是最近的许多实验室和现场数据表明,通过增加大气中的CO_2浓度可以直接抑制叶片异戊二烯的产生。叶片光合作用和异戊二烯生产解耦的细胞机制仍在等待完整的解释,但是在动态植被模型中对此观察进行解释,该模型包含对异戊二烯排放的半机械处理,已被证明会显着改变未来的全球异戊二烯排放估算。在这里,我们将这些估计值与化学-气候模型一起使用,以比较异戊二烯模拟对21世纪后期O_3和OH含量的影响,无或有直接CO_2抑制的异戊二烯模拟效果。对表面O_3的影响很大。由于硝酸异戊二烯和过氧乙酰硝酸盐(PAN)的化学作用,包括对异戊二烯的CO_2抑制在内,污染源(O_3降低最多10 ppbv)与污染程度较小(O_3最多增加10 ppbv)的反应相反。 。 OH浓度随着未来异戊二烯排放量的降低而增加,甲烷的寿命缩短了约7个月(6.6%)。我们的模拟强调了由于生物排放模式导致的未来化学和气候研究的巨大不确定性,并强调了使用全球平均气候指标(例如全球辐射强迫)来量化反应性,非均质分布物质对大气的影响的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号