首页> 外文期刊>Icarus: International Journal of Solar System Studies >Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth
【24h】

Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

机译:与地球共轨共振中形成月球的撞击器的动态隔离

获取原文
获取原文并翻译 | 示例
           

摘要

Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (Me). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass >= 1.7 M-circle plus). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems. (C) 2016 Elsevier Inc. All rights reserved.
机译:如果撞击源是在地球附近形成的本地物体,那么有关月球起源的巨大撞击假说以及相关的“同位素危机”的最新担忧可以得到缓解。我们调查了一个可能符合此标准的场景,并假设原行星起源于与地球1:1的共轨共振。使用N体数值模拟,我们探索了将火星质量伴星置于各种共轨构型,原始地球的地球质量为0.9地动量(Me)的动力学后果。我们对162种不同的配置进行了建模,其中一些仅包含四个地球行星,而其他则包含了四个巨型行星。在4行星模型和8行星模型中,我们发现一个火星质量伴星通常在我们的整个2.5亿年(Myr)持续时间内(68个独特的模拟中的59个)保持稳定的地球轨道。为了破坏这种系统的稳定性,我们进行了另外94次仿真,其中包括第二个火星-质量同轨道伴星。即使有两个火星质量同伴共享地球的轨道,这些模型中的三分之二(66)在整个250 Myr的模拟时间内也保持稳定。在最终变得不稳定的28个2伴星模型中,在地球与逃逸的同轨同伴之间观察到24次撞击。我们观察到的火星质量伴星与地球碰撞的平均延迟时间为102迈尔,最长的延迟时间为221迈尔。在40%变得不稳定的8行星模型中(25个中有10个),地球与质量几乎相等的金星相撞,形成了超地球(此处宽松地定义为质量> = 1.7 M圆加)。这些撞击通常是对系统的最终巨大撞击,通常发生在地球和/或金星吸积了一个或多个其他大型物体之后。一些稳定的配置涉及不寻常的3行星分层同轨系统。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号