...
首页> 外文期刊>Icarus: International Journal of Solar System Studies >The feeding zones of terrestrial planets and insights into Moon formation
【24h】

The feeding zones of terrestrial planets and insights into Moon formation

机译:地面行星的进食区和对月球形成的见解

获取原文
获取原文并翻译 | 示例

摘要

The final stage of terrestrial planet formation consists of several hundred approximately lunar mass bodies accreting into a few terrestrial planets. This final stage is stochastic, making it hard to predict which parts of the original planetesimal disk contributed to each of our terrestrial planets. Here we present an extensive suite of terrestrial planet formation simulations that allows quantitative analysis of this process. Although there is a general correlation between a planet's location and the initial semi-major axes of its constituent planetesimals, we concur with previous studies that Venus, Earth, and Mars analogs have overlapping, stochastic feeding zones. We quantify the feeding zone width, Aa, as the mass-weighted standard deviation of the initial semi-major axes of the planetary embryos and planetesimals that make up the final planet. The size of a planet's feeding zone in our simulations does not correlate with its final mass or semi-major axis, suggesting there is no systematic trend between a planet's mass and its volatile inventory. Instead, we find that the feeding zone of any planet more massive than 0.1 M-circle plus is roughly proportional to the radial extent of the initial disk from which it formed: Delta alpha approximate to 0.25(alpha(max) - alpha(min)), where alpha(min) and alpha(max) are the inner and outer edge of the initial planetesimal disk. These wide stochastic feeding zones have significant consequences for the origin of the Moon, since the canonical scenario predicts the Moon should be primarily composed of material from Earth's last major impactor (Theia), yet its isotopic composition is indistinguishable from Earth. In particular, we find that the feeding zones of Theia analogs are significantly more stochastic than the planetary analogs. Depending on our assumed initial distribution of oxygen isotopes within the planetesimal disk, we find a similar to 5% or less probability that the Earth and Theia will form with an isotopic difference equal to or smaller than the Earth and Moon's. In fact we predict that every planetary mass body should be expected to have a unique isotopic signature. In addition, we find paucities of massive Theia analogs and high velocity Moon-forming collisions, two recently proposed explanations for the Moon's isotopic composition. Our work suggests that there is still no scenario for the Moon's origin that explains its isotopic composition with a high probability event. (C) 2015 Elsevier Inc. All rights reserved.
机译:地面行星形成的最后阶段由几百个近似月球质量的体组成,并逐渐积聚到几个地面行星中。这个最后阶段是随机的,因此很难预测原始行星盘的哪些部分对我们的每个地球行星都有贡献。在这里,我们提出了一套广泛的陆地行星形成模拟,可以对该过程进行定量分析。尽管行星的位置与其组成的小行星的初始半长轴之间存在普遍的相关性,但我们同意先前的研究,即金星,地球和火星类似物具有重叠的随机进食区。我们将进食区宽度Aa量化为组成最终行星的行星胚和小行星的初始半长轴的质量加权标准偏差。在我们的模拟中,行星进食区的大小与其最终质量或半长轴不相关,这表明行星质量与其挥发物存量之间没有系统的趋势。取而代之的是,我们发现,质量大于0.1 M圆的行星的进给区大致与形成它的初始圆盘的径向范围成正比:Delta alpha大约为0.25(alpha(max)-alpha(min) ),其中alpha(min)和alpha(max)是初始小行星盘的内边缘和外边缘。这些大范围的随机进食区对月球的起源具有重大影响,因为典型的情景预测月球应该主要由地球最后一个主要撞击者(Theia)的物质组成,但其同位素组成与地球却无法区分。尤其是,我们发现Theia类似物的进食区比行星类似物的随机性要大得多。根据我们假设的行星同位素内氧同位素的初始分布,我们发现地球和Theia形成的同位素差等于或小于地球和月球的概率约为5%或更低。实际上,我们预测应该期望每个行星质量体具有独特的同位素特征。此外,我们发现大量的Theia类似物和高速的月球形成碰撞,这是最近提出的关于月球同位素组成的两种解释。我们的工作表明,对于月球的起源,仍然没有任何场景可以解释高概率事件的同位素组成。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号