首页> 外文期刊>Icarus: International Journal of Solar System Studies >The thermal structure of titan's upper atmosphere, I: Temperature profiles from Cassini INMS observations
【24h】

The thermal structure of titan's upper atmosphere, I: Temperature profiles from Cassini INMS observations

机译:泰坦高层大气的热结构,I:卡西尼INMS观测的温度曲线

获取原文
获取原文并翻译 | 示例
       

摘要

We derive vertical temperature profiles from Ion Neutral Mass Spectrometer (INMS) N_2 density measurements from 32 Cassini passes. We find that the average temperature of Titan's thermosphere varies significantly from pass-to-pass between 112 and 175K. The temperatures from individual temperature profiles also varies considerably, with many passes exhibiting wave-like temperature perturbations and large temperature gradients. Wave-like temperature perturbations have wavelengths between 150 and 420km and amplitudes between 3% and 22% and vertical wave power spectra of the INMS data and HASI data have a slope between -2 and -3, which is consistent with vertically propagating atmospheric waves. The lack of a strong correlation between temperature and latitude, longitude, solar zenith angle, or local solar time indicates that the thermal structure of Titan's thermosphere is not primarily determined by the absorption of solar EUV flux. At N_2 densities greater than 10~8cm~(-3), Titan's thermosphere is colder when Titan is observed in Saturn's magnetospheric lobes compared to Saturn's plasma sheet as proposed by Westlake et al. (Westlake, J.H. et al. [2011]. J. Geophys. Res. 116, A03318. http://dx.doi.org/10.1029/2010JA016251). This apparent correlation suggests that magnetospheric particle precipitation causes the temperature variability in Titan's thermosphere; however, at densities smaller than 10~8cm~(-3) the lobe passes are hotter than the plasma sheet passes and we find no correlation between the temperature of Titan's thermosphere and ionospheric signatures of enhanced particle precipitation, which suggests that the correlation is not indicative of a physical connection. The temperature of Titan's thermosphere also may have decreased by ~10K around mid-2007. Finally, we classify the vertical temperature profiles to show which passes are hot and cold and which passes have the largest temperature variations. In a companion paper (Part II), we estimate the strength of energy sources and sinks in Titan's thermosphere.
机译:我们从32个卡西尼峰通过离子中性质谱仪(INMS)N_2密度测量得出垂直温度曲线。我们发现,土卫六热圈的平均温度在112和175K之间变化。来自各个温度曲线的温度也有很大变化,许多道次都表现出波状的温度扰动和较大的温度梯度。波浪状的温度扰动的波长在150至420km之间,幅度在3%至22%之间,INMS数据和HASI数据的垂直波功率谱的斜率在-2和-3之间,这与垂直传播的大气波一致。温度与纬度,经度,太阳天顶角或当地太阳时间之间缺乏强相关性,这表明土卫六热圈的热结构并非主要取决于太阳EUV通量的吸收。在N_2密度大于10〜8cm〜(-3)时,与韦斯特莱克等人提出的土星等离子片相比,在土星的磁层瓣中观测到土卫六时,土卫六的热圈更冷。 (Westlake,J.H。等人,[2011]。J.Geophys.Res.116,A03318。http://dx.doi.org/10.1029/2010JA016251)。这种明显的相关性表明,磁层的降水会引起土卫六热球的温度变化。然而,当密度小于10〜8cm〜(-3)时,波瓣的通过温度要比等离子板通过的温度高,因此我们发现泰坦热圈的温度与电离层的粒子沉淀增强特征之间没有相关性,这表明该相关性与指示物理连接。泰坦热圈的温度也可能在2007年中左右降低约10K。最后,我们对垂直温度分布进行分类,以显示哪些通道是热的和冷的,以及哪些通道的温度变化最大。在随附的论文(第二部分)中,我们估计了泰坦热圈中能量源和汇的强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号