...
首页> 外文期刊>Icarus: International Journal of Solar System Studies >Coupled convection and tidal dissipation in Europa's ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology
【24h】

Coupled convection and tidal dissipation in Europa's ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology

机译:使用非牛顿粒度敏感(GSS)蠕变流变学研究欧罗巴冰壳中的对流和潮气耦合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present self-consistent, fully coupled two-dimensional (2D) numerical models of thermal evolution and tidal heating to investigate how convection interacts with tidal dissipation under the influence of non-Newtonian grain-size-sensitive creep rheology (plausibly resulting from grain boundary sliding) in Europa's ice shell. To determine the thermal evolution, we solved the convection equations (using finite-element code ConMan) with the tidal dissipation as a heat source. For a given heterogeneous temperature field at a given time, we determined the tidal dissipation rate throughout the ice shell by solving for the tidal stresses and strains subject to Maxwell viscoelastic rheology (using finite-element code Tekton). In this way, the convection and tidal heating are fully coupled and evolve together. Our simulations show that the tidal dissipation rate can have a strong impact on the onset of thermal convection in Europa's ice shell under non-Newtonian GSS rheology. By varying the ice grain size (1-10mm), ice-shell thickness (20-120km), and tidal-strain amplitude (0-4×10~(-5)), we study the interrelationship of convection and conduction regimes in Europa's ice shell. Under non-Newtonian grain-size-sensitive creep rheology and ice grain size larger than 1mm, no thermal convection can initiate in Europa's ice shell (for thicknesses <100km) without tidal dissipation. However, thermal convection can start in thinner ice shells under the influence of tidal dissipation. The required tidal-strain amplitude for convection to occur decreases as the ice-shell thickness increases. For grain sizes of 1-10mm, convection can occur in ice shells as thin as 20-40km with the estimated tidal-strain amplitude of 2×10~(-5) on Europa.
机译:我们提出了热演化和潮汐加热的自洽,完全耦合的二维(2D)数值模型,以研究对流如何在非牛顿粒度敏感的蠕变流变学的影响下(可能是由于晶界引起的)与潮汐耗散相互作用。滑动)放在欧罗巴的冰壳中。为了确定热演化,我们求解了以潮汐耗散为热源的对流方程(使用有限元代码ConMan)。对于给定时间的给定非均质温度场,我们通过求解受麦克斯韦粘弹性流变学影响的潮汐应力和应变(使用有限元代码Tekton)来确定整个冰壳的潮汐消散率。这样,对流和潮汐加热完全耦合并一起发展。我们的模拟结果表明,在非牛顿GSS流变条件下,潮汐耗散率可能会对欧罗巴冰壳中热对流的开始产生重大影响。通过改变冰粒大小(1-10mm),冰壳厚度(20-120km)和潮汐应变振幅(0-4×10〜(-5)),我们研究了对流和传导方式之间的相互关系。欧罗巴的冰壳。在非牛顿粒度敏感的蠕变流变和冰粒尺寸大于1mm的情况下,欧罗巴的冰壳(厚度小于100 km)不会发生热对流而不会产生潮汐耗散。但是,在潮汐消散的影响下,热对流可以在较薄的冰壳中开始。随着冰壳厚度的增加,对流发生所需的潮汐应变幅值减小。对于1-10mm的颗粒,对流可能会发生在厚度为20-40km的薄冰壳中,而欧罗巴上的潮汐应变估计值为2×10〜(-5)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号