首页> 外文期刊>Icarus: International Journal of Solar System Studies >2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods
【24h】

2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods

机译:使用DSMC方法在土卫二通风口中的气体流动和冰粒加速的二维模型

获取原文
获取原文并翻译 | 示例
           

摘要

The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of similar to 300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451,685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number similar to 10-250) and dense flows in narrow tubular channels (Reynolds number similar to 10(6)). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of similar to 10(14)-10(20) m(-3) were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of similar to 10 m, the much denser flows with number densities of 10(21)-10(23) m(-3) accelerated micron-sized grains to bulk gas speed of similar to 600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains. Published by Elsevier Inc.
机译:土卫二水蒸气羽流的气体分布和喷出的冰粒的终极速度与其地下裂缝和喷口有物理联系。据估计,气体以接近300-1000 m / s的速度从裂隙中逸出,而微米级的晶粒以与逸出速度相当的速度射出(Schmidt,J.等人[2008]。Nature 451,685)。 -688)。我们研究了孤立的轴对称排气孔几何形状对地下气体分布的影响,进而研究了气体阻力对晶粒加速的影响。为了考虑广泛的流动形式,使用了碰撞限制器直接模拟蒙特卡洛(DSMC)技术对地下气体流动进行了建模(Bird,G. [1994]。分子气体动力学和气体流动的直接模拟。牛津大学Press,牛津; Titov,EV等人[2008] .J.Propul.Power 24(2),311-321)。生成的DSMC气体分布用于确定在测试粒子模型中整合冰粒轨迹的阻力。对宽通道中的扩散流(雷诺数类似于10-250)和狭窄管状通道中的密集流(雷诺数类似于10(6))进行了模拟。我们将气体性质(例如整体速度和温度)以及在排气孔出口获得的最终颗粒速度与从卡西尼号数据推断出的羽流值进行了比较。在模拟类似于老虎条纹的宽裂缝中,所得的地下气体密度类似于10(14)-10(20)m(-3),不足以将微米级的冰粒加速到土卫二的逃逸速度。在模拟半径近似为10 m的狭窄管状通风孔时,密度为10(21)-10(23)m(-3)的微米级晶粒加速到体积气体速度近似为600的密度更大得多的流多发性硬化症。需要进一步的研究,以了解排气孔的几何形状,气源速率与喷出颗粒的大小和速度之间的复杂关系。由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号