首页> 外文期刊>Icarus: International Journal of Solar System Studies >Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons
【24h】

Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons

机译:土星中型卫星在年轻质量环的粘性扩散过程中的吸积:解决贫硅酸盐环与富硅酸盐卫星之间的悖论

获取原文
获取原文并翻译 | 示例
           

摘要

The origin of Saturn's inner mid-sized moons (Mimas, Enceladus, Tethys, Dione and Rhea) and Saturn's rings is debated. Charnoz et al. [Charnoz, S., Salmon J., Crida A., 2010. Nature 465, 752-754] introduced the idea that the smallest inner moons could form from the spreading of the rings' edge while Salmon et al. [Salmon, J., Charnoz, S., Crida, A., Brahic, A., 2010. Icarus 209, 771-785] showed that the rings could have been initially massive, and so was the ring's progenitor itself. One may wonder if the mid-sized moons may have formed also from the debris of a massive ring progenitor, as also suggested by Canup [Canup, R., 2010. Nature 468, 943-946]. However, the process driving mid-sized moon accretion from the icy debris disks has not been investigated in details. In particular, Canup's (2010) model does not seem able to explain the varying silicate contents of the mid-sized moons (from 6% to 57% in mass). Here, we explore the formation of large objects from a massive ice-rich ring (a few times Rhea's mass) and describe the fundamental properties and implications of this new process. Using a hybrid computer model, we show that accretion within massive icy rings can form all mid-sized moons from Mimas to Rhea. However in order to explain their current locations, intense dissipation within Saturn (with Q _p< 2000) is required. Our results are consistent with a satellite origin tied to the rings formation at least 2.5. Gy ago, both compatible with either a formation concurrent to Saturn or during the Late Heavy Bombardment. Tidal heating related to high-eccentricity post-accretional episodes may induce early geological activity. If some massive irregular chunks of silicates were initially present within the rings, they would be present today inside the satellites' cores which would have accreted icy shells while being tidally expelled from the rings (via a heterogeneous accretion process). These moons may be either mostly icy, or, if they contain a significant amount of rock, already differentiated from the ice without the need for radiogenic heating. The resulting inner mid-sized moons may be significantly younger than the Solar System and a ~1. Gyr formation delay is possible between Mimas and Rhea. The rings resulting from this process would evolve to a state compatible with current mass estimates of Saturn's rings, and nearly devoid of silicates, apart from isolated silicate chunks coated with ice, interpreted as today Saturn's rings' propellers and ring-moons (like Pan or Daphnis).
机译:对土星内部中型卫星(Mimas,Enceladus,Tethys,Dione和Rhea)和土星环的起源进行了辩论。 Charnoz等。 [Charnoz,S.,Salmon J.,Crida A.,2010. Nature 465,752-754]提出了一个想法,即最小的内卫星可能是由环边缘的扩展形成的,而Salmon等人则认为。 [Salmon,J.,Charnoz,S.,Crida,A.,Brahic,A.,2010.伊卡洛斯209,771-785]显示,这些环最初可能是巨大的,环的祖先本身也是如此。有人可能会怀疑,是否也可能是由大型环形祖先的碎片形成了中型卫星的结果,正如Canup所建议的那样[Canup,R.,2010. Nature 468,943-946]。但是,尚未详细研究从冰冷的碎片盘中驱动中型月球增生的过程。特别是,Canup(2010)的模型似乎无法解释中型卫星(质量从6%到57%)变化的硅酸盐含量。在这里,我们探索了由巨大的富含冰的环(是Rhea质量的数倍)形成的大物体的过程,并描述了这一新过程的基本特性和含义。使用混合计算机模型,我们表明,大型冰环内的积聚可以形成从Mimas到Rhea的所有中型卫星。但是,为了解释它们的当前位置,需要在土星内部进行强烈耗散(Q _p <2000)。我们的结果与至少2.5个成环的卫星起源是一致的。 Gy以前,两者都与土星同时发生的地层或后期重炮轰炸兼容。与高偏心率增生后的事件有关的潮汐加热可能会诱发早期的地质活动。如果环中最初存在大量块状不规则的硅酸盐,那么今天它们将存在于卫星的核中,这些核本来会积聚冰冷的壳,同时会通过潮汐从环中排出(通过异质吸积过程)。这些卫星可能大部分是冰冷的,或者,如果它们包含大量的岩石,它们已经与冰区分开了,而无需进行放射源加热。由此产生的内部中型卫星可能比太阳系年轻得多,并且大约为1。 Mimas和Rhea之间的Gyr形成延迟是可能的。由该过程产生的环将演变为与当前土星环的质量估计值兼容的状态,除了被冰覆盖的孤立的硅酸盐块外,几乎没有硅酸盐,这被解释为当今土星环的螺旋桨和月球(例如Pan或达芙妮)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号