首页> 外文期刊>Food hydrocolloids >Insight in changes in starch and proteins molecular structure of non-wheat cereal flours influenced by roasting and extrusion treatments
【24h】

Insight in changes in starch and proteins molecular structure of non-wheat cereal flours influenced by roasting and extrusion treatments

机译:Insight in changes in starch and proteins molecular structure of non-wheat cereal flours influenced by roasting and extrusion treatments

获取原文
获取原文并翻译 | 示例
           

摘要

Barley, rye, triticale, oat, sorghum and millet flours, subjected to roasting or extrusion treatment, were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) and Raman spectroscopy with aim to determine structural changes within starch and protein molecules that caused specific rheological properties of heat treated flours. Mixolab was used to determine how changes in starch and protein structure are reflected in rheological properties of dough. Extrusion treatment caused more extensive changes both in starch and protein structure than roasting treatment. Changes of protein secondary structure from alpha-helix to beta-turn aggregated by hydrogen bonds, formed mainly between tyrosyl groups, as well as change in disulphide bond conformation, were more pronounced in extruded flour samples. Changes in the starch structure were also more extensive in extruded flours samples, including complete gelatinization and formation of amylose-lipid complexes. The results obtained by Mixolab showed that all extruded doughs showed resistance at C2 point, which was shifted to approximately 30 min, indicating higher mechanical resistance. It was supposed that this change in dough behaviour is related to protein polymerization during extrusion treat-ment and starch aggregation during roasting treatment.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号