...
首页> 外文期刊>SIAM Journal on Numerical Analysis >NEURAL PARAMETRIC FOKKER-PLANCK EQUATION
【24h】

NEURAL PARAMETRIC FOKKER-PLANCK EQUATION

机译:神经参数 FOKKER-PLANCK 方程

获取原文

摘要

In this paper, we develop and analyze numerical methods for high-dimensional Fokker-Planck equations by leveraging generative models from deep learning. Our starting point is a formulation of the Fokker-Planck equation as a system of ordinary differential equations (ODEs) on finite-dimensional parameter space with the parameters inherited from generative models such as normalizing flows. We call such ODEs neural parametric Fokker-Planck equations. The fact that the Fokker-Planck equation can be viewed as the L2-Wasserstein gradient flow of Kullbackflow of KL divergence on the set of probability densities generated by neural networks. For numerical computation, we design a variational semi-implicit scheme for the time discretization of the proposed ODE. Such an algorithm is sampling-based, which can readily handle the Fokker-Planck equations in higher dimensional spaces. Moreover, we also establish bounds for the asymptotic convergence analysis of the neural parametric Fokker-Planck equation as well as the error analysis for both the continuous and discrete versions. Several numerical examples are provided to illustrate the performance of the proposed algorithms and analysis.
机译:在本文中,我们利用深度学习的生成模型开发和分析了高维福克-普朗克方程的数值方法。我们的出发点是将福克-普朗克方程表述为有限维参数空间上的常微分方程组 (ODE),其参数继承自生成模型,例如归一化流动。我们将这种常微分方程称为神经参数福克-普朗克方程。事实上,福克-普朗克方程可以看作是神经网络生成的概率密度集上KL散度的Kullbackflow的L2-Wasserstein梯度流。在数值计算方面,我们设计了一种变分半隐式方案,用于对所提出的常微分方程进行时间离散化。这种算法是基于采样的,可以很容易地处理高维空间中的福克-普朗克方程。此外,我们还建立了神经参数Fokker-Planck方程的渐近收敛分析以及连续和离散版本的误差分析的边界。通过数值算例验证了所提算法的性能和分析。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号