...
首页> 外文期刊>Aviation, space, and environmental medicine. >Model of CNS O2 toxicity in complex dives with varied metabolic rates and inspired CO2 levels.
【24h】

Model of CNS O2 toxicity in complex dives with varied metabolic rates and inspired CO2 levels.

机译:在复杂的潜水中,CNS O2毒性的模型具有不同的代谢率和受启发的CO2水平。

获取原文
获取原文并翻译 | 示例
           

摘要

INTRODUCTION: Clinical hyperbaric oxygen (HBO) therapy and the use of pure oxygen or gases having a high partial pressure of oxygen in diving carry a risk of central nervous system (CNS) oxygen toxicity. Previously, we solved the power equation K = t2(PO2/101.3)C for humans, where t is the exposure time, PO2 is the oxygen pressure, and K is the cumulative oxygen toxicity index. The value of c was 6.76, and a symptom may appear when K reaches a threshold value Kc = 2.31 X 10(8) (Arieli et al. J Appl Physiol 2002; 92:248-56). METHODS AND RESULTS: The calculation of K for a complex exposure profile made it possible to estimate risk from the normal distribution for a metabolic rate of 1.28 L x min(-1), Z = [ln(K0.5)-9.63]/2.02 and for 0.9 L x min(-1), Z = [ln(K0.5)-11.19]/1.35. The predicted risk was in agreement with the reported risk in composite exposures. The parameters c and ln(Kc) in the power equation are linearly related to metabolic rate (M) and inspired CO2 in rats. Due to the assumed similar relationship between the data from rats and humans, the mean time to CNS oxygen toxicity (tc(M)) as a function of metabolic rate may be calculated for humans as follows: tc(M) = [(e(-2.85 M + 31.8))/(PO2/101.3)(-7.45 M + 39.6)]0.5, where M is metabolic rate in units of resting metabolic rate. A parallel equation for the mean time to toxicity as a function of PCO2 was derived for the rat. This equation can be transformed to express the latency in humans, once the parameters for humans are known. CONCLUSIONS:The power equation that predicts oxygen toxicity in humans was extended to include a complex diving profile as well as the effects of metabolic rate and CO2.
机译:简介:临床高压氧(HBO)疗法以及在潜水中使用纯氧或氧气分压高的气体会带来中枢神经系统(CNS)氧中毒的风险。以前,我们求解了人的功率方程K = t2(PO2 / 101.3)C,其中t是暴露时间,PO2是氧气压力,K是累积氧气毒性指数。 c的值为6.76,并且当K达到阈值Kc = 2.31×10(8)时可能出现症状(Arieli等人,J Appl Physiol 2002; 92:248-56)。方法和结果:计算复杂暴露曲线的K使得可以从正态分布估计代谢率为1.28 L x min(-1),Z = [ln(K0.5)-9.63] /的风险对于2.0 L和0.9 L x min(-1),Z = [ln(K0.5)-11.19] /1.35。预测风险与报告的复合暴露风险一致。功率方程中的参数c和ln(Kc)与大鼠的代谢率(M)和激发的CO2线性相关。由于假定来自大鼠和人类的数据之间存在相似的关系,因此人类的中枢神经系统氧中毒平均时间(tc(M))随代谢率的变化可计算如下:tc(M)= [(e( -2.85 M + 31.8))/(PO2 / 101.3)(-7.45 M + 39.6)] 0.5,其中M是代谢速率,以静息代谢速率为单位。推导了大鼠平均毒性时间与PCO2的关系的平行方程。一旦知道了人类的参数,就可以将这个方程式转换成人类潜伏期。结论:预测人的氧气毒性的幂方程式已扩展到包括复杂的潜水曲线以及新陈代谢率和二氧化碳的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号