首页> 外文期刊>Annals of Physics >A symmetry principle for topological quantum order
【24h】

A symmetry principle for topological quantum order

机译:拓扑量子序的对称原理

获取原文
获取外文期刊封面目录资料

摘要

We present a unifying framework to study physical systems which exhibit topological quantum order (TQO). The major guiding principle behind our approach is that of symmetries and entanglement. These symmetries may be actual symmetries of the Hamiltonian characterizing the system, or emergent symmetries. To this end, we introduce the concept of low-dimensional Gauge-like symmetries (CLSs), and the physical conservation laws (including topological terms, fractionalization, and the absence of quasi-particle excitations) which emerge from them. We prove then sufficient conditions for TQO at both zero and finite temperatures. The physical engine for TQO are topological defects associated with the restoration of GLSs. These defects propagate freely through the system and enforce TQO. Our results are strongest for gapped systems with continuous GLSs. At zero temperature, selection rules associated with the GLSs enable us to systematically construct general states with TQO; these selection rules do not rely on the existence of a finite gap between the ground states to all other excited states. Indices associated with these symmetries correspond to different topological sectors. All currently known examples of TQO display GLSs. Other systems exhibiting Such symmetries include Hamiltonians depicting orbital-dependent spin-exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. The symmetry based framework discussed herein allows us to go beyond standard topological field theories and systematically engineer new physical models with finite temperature TQO (both Abelian and non-Abelian). Furthermore, we analyze the insufficiency of entanglement entropy (we introduce SU(N) Klein models on small world networks to make the argument even sharper), spectral structures, maximal string correlators, and fractionalization in establishing TQO. We show that Kitaev's Toric code model and Wen's plaquette model are equivalent and reduce, by a duality mapping, to an [sing chain, demonstrating that despite the spectral gap in these systems the toric operator expectation values may vanish once thermal fluctuations are present. This illustrates the fact that the quantum states themselves in a particular (operator language) representation encode TQO and that the duality mappings, being non-local in the original representation, disentangle the order. We present a general algorithm for the construction of long-range string and brane orders in general systems with entangled ground states; this algorithm relies on general ground states selection rules and becomes of the broadest applicability in gapped systems in arbitrary dimensions. We exactly recast some known non-local string correlators in terms of local correlation functions. We discuss relations to problems in graph theory.
机译:我们提出了一个统一的框架来研究表现出拓扑量子顺序(TQO)的物理系统。我们方法背后的主要指导原则是对称和纠缠。这些对称性可以是表征系统的哈密顿量的实际对称性,也可以是紧急出现的对称性。为此,我们介绍了低维类规对称性(CLS)的概念,以及由此产生的物理守恒定律(包括拓扑项,分数化和不存在准粒子激发)。然后我们证明了在零和有限温度下进行TQO的充分条件。 TQO的物理引擎是与GLS恢复相关的拓扑缺陷。这些缺陷在系统中自由传播并强制执行TQO。对于具有连续GLS的气隙系统,我们的结果最强。在零温度下,与GLS相关的选择规则使我们能够使用TQO系统地构建一般状态。这些选择规则不依赖于基态与所有其他激发态之间存在有限的间隙。与这些对称性关联的索引对应于不同的拓扑扇区。 TQO的所有当前已知示例均显示GLS。表现出这种对称性的其他系统包括描述过渡金属轨道化合物中依赖轨道的自旋交换和Jahn-Teller效应的哈密顿量,短程受挫的Klein自旋模型以及p + ip超导阵列。本文讨论的基于对称性的框架使我们能够超越标准的拓扑领域理论,并系统地设计具有有限温度TQO(阿贝尔和非阿贝尔)的新物理模型。此外,我们分析了纠缠熵的不足(在小世界网络上引入SU(N)Klein模型以使论点更加尖锐),频谱结构,最大字符串相关器和建立TQO的分数化。我们证明了Kitaev的Toric码模型和Wen的plaquette模型是等效的,并且通过对偶映射减少到一个单链,这表明尽管这些系统中存在频谱差距,但一旦出现热波动,复曲面运算符的期望值可能会消失。这说明了这样一个事实,即量子状态本身以特定的(运算符语言)表示形式对TQO进行编码,而对偶映射在原始表示形式中不是局部的,从而解开了该顺序。我们提出了一种在基态纠缠的通用系统中构造远距离字符串和brane阶的通用算法。该算法依靠一般的基态选择规则,在任意尺寸的带隙系统中具有最广泛的适用性。我们根据局部相关函数准确地重铸了一些已知的非局部字符串相关器。我们讨论图论中与问题的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号