首页> 外文期刊>IEEE Transactions on Robotics: A publication of the IEEE Robotics and Automation Society >Online Search-Based Collision-Inclusive Motion Planning and Control for Impact-Resilient Mobile Robots
【24h】

Online Search-Based Collision-Inclusive Motion Planning and Control for Impact-Resilient Mobile Robots

机译:基于在线搜索的抗冲击移动机器人的含碰撞运动规划与控制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This article focuses on the emerging paradigm shift of collision-inclusive motion planning and control for impact-resilient mobile robots, and develops a unified hierarchical framework for navigation in unknown and partially observable cluttered spaces. At the lower level, we develop a deformation recovery control and trajectory replanning strategy that handles collisions that may occur at run time, locally. The low-level system actively detects collisions (via embedded Hall effect sensors on a mobile robot built in-house), enables the robot to recover from them, and locally adjusts the postimpact trajectory. Then, at the higher level, we propose a search-based planning algorithm to determine how to best utilize potential collisions to improve certain metrics, such as control energy and computational time. Our method builds upon A* with jump points. We generate a novel heuristic function, and a collision checking and adjustment technique, thus making the A* algorithm converge faster to reach the goal by exploiting and utilizing possible collisions. The overall hierarchical framework generated by combining the global A* algorithm and the local deformation recovery and replanning strategy, as well as individual components of this framework, are tested extensively both in simulation and experimentally. An ablation study draws links to related state-of-the-art search-based collision-avoidance planners (for the overall framework), as well as search-based collision-avoidance and sampling-based collision-inclusive global planners (for the higher level). Results demonstrate our method's efficacy for collision-inclusive motion planning and control in unknown environments with isolated obstacles for a class of impact-resilient robots operating in 2-D.
机译:本文重点关注冲击弹性移动机器人的碰撞包容性运动规划和控制的新兴范式转变,并开发了一个统一的分层框架,用于在未知和部分可观测的杂乱空间中导航。在较低级别,我们开发了一种变形恢复控制和轨迹重新规划策略,用于处理运行时可能发生的碰撞。低层系统主动检测碰撞(通过内部制造的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从碰撞中恢复,并局部调整碰撞后的轨迹。然后,在更高层次上,我们提出了一种基于搜索的规划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在带有跳跃点的 A* 之上。我们生成了一种新颖的启发式函数,以及一种碰撞检查和调整技术,从而通过利用和利用可能的碰撞,使A*算法更快地收敛以达到目标。结合全局A*算法和局部变形恢复和重新规划策略生成的整体分层框架,以及该框架的各个组件,在仿真和实验中进行了广泛的测试。消融研究与相关的最先进的基于搜索的防撞规划器(针对整体框架)以及基于搜索的防撞和基于抽样的包含碰撞的全球规划器(针对更高级别)建立了链接。结果表明,该方法在具有隔离障碍物的未知环境中对一类二维操作的抗冲击机器人的碰撞包容性运动规划和控制具有有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号