首页> 外文期刊>European food research and technology =: Zeitschrift fur Lebensmittel-Untersuchung und -Forschung. A >Investigation of the methylglyoxal scavenging kinetics of different food matrices under simulated intestinal conditions
【24h】

Investigation of the methylglyoxal scavenging kinetics of different food matrices under simulated intestinal conditions

机译:Investigation of the methylglyoxal scavenging kinetics of different food matrices under simulated intestinal conditions

获取原文
获取原文并翻译 | 示例
           

摘要

This study aimed to evaluate the potential roles of different foods to scavenge exogenous dicarbonyl compounds under simulated gastrointestinal conditions. Four food groups having different arginine, creatine, thiol, and flavonoid contents were subjected to simulated gastric and intestinal conditions together with methylglyoxal. In comparison to control, foods from group 1 (chicken, beef and egg), group 2 (walnut, hazelnut, and kidney bean) and group 3 (broccoli, onion, garlic, and cauliflower) caused a significant (p < 0.05) decrease in the concentration of methylglyoxal under gastric conditions. Egg was found as the most efficient methylglyoxal scavenger food under gastric conditions. Changes in the concentration of methylglyoxal were monitored kinetically during the intestinal phase. All foods caused significant (p < 0.05) decreases in the concentration of methylglyoxal under intestinal conditions. Chicken, beef, and broccoli were found to scavenge more than 80% of methylglyoxal during 2 h of intestinal digestion. The reaction of methylglyoxal with scavenging compounds in foods was evaluated using an irreversible bimolecular reaction model. Reaction rate constants and initial reaction rates were calculated for each food. The highest reaction rate constant was estimated as 26.6 ± 1.38 L/mol min for egg, while the highest initial reaction rate was 3.6 ± 0.42 mM/min for chicken. Foods were ranked according to their methylglyoxal scavenging rates under intestinal conditions and their scavengingpotential was associated with their scavenging content.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号