首页> 外文期刊>Autoimmunity >Metabolic control of the epigenome in systemic Lupus erythematosus
【24h】

Metabolic control of the epigenome in systemic Lupus erythematosus

机译:系统性红斑狼疮表观基因组的代谢控制

获取原文
获取原文并翻译 | 示例
           

摘要

Epigenetic mechanisms are proposed to underlie aberrant gene expression in systemic lupus erythematosus (SLE) that results in dysregulation of the immune system and loss of tolerance. Modifications of DNA and histones require substrates derived from diet and intermediary metabolism. DNA and histone methyltransferases depend on S-adenosylmethionine (SAM) as a methyl donor. SAM is generated from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (MAT), a redox-sensitive enzyme in the SAM cycle. The availability of B vitamins and methionine regulate SAM generation. The DNA of SLE patients is hypomethylated, indicating dysfunction in the SAM cycle and methyltransferase activity. Acetyl-CoA, which is necessary for histone acetylation, is generated from citrate produced in mitochondria. Mitochondria are also responsible for de novo synthesis of flavin adenine dinucleotide (FAD) for histone demethylation. Mitochondrial oxidative phosphorylation is the dominant source of ATP. The depletion of ATP in lupus T cells may affect MAT activity as well as adenosine monophosphate (AMP) activated protein kinase (AMPK), which phosphorylates histones and inhibits mechanistic target of rapamycin (mTOR). In turn, mTOR can modify epigenetic pathways including methylation, demethylation, and histone phosphorylation and mediates enhanced T-cell activation in SLE. Beyond their role in metabolism, mitochondria are the main source of reactive oxygen intermediates (ROI), which activate mTOR and regulate the activity of histone and DNA modifying enzymes. In this review we will focus on the sources of metabolites required for epigenetic regulation and how the flux of the underlying metabolic pathways affects gene expression.
机译:提出了表观遗传机制作为系统性红斑狼疮(SLE)中异常基因表达的基础,这会导致免疫系统失调和耐受性下降。 DNA和组蛋白的修饰需要来自饮食和中间代谢的底物。 DNA和组蛋白甲基转移酶依赖于S-腺苷甲硫氨酸(SAM)作为甲基供体。 SAM是通过SAM循环中的氧化还原敏感酶蛋氨酸腺苷基转移酶(MAT)由三磷酸腺苷(ATP)和蛋氨酸生成的。 B维生素和蛋氨酸的可用性可调节SAM的产生。 SLE患者的DNA低甲基化,表明SAM循环功能异常和甲基转移酶活性。乙酰辅酶A是组蛋白乙酰化所必需的,它是由线粒体中产生的柠檬酸盐生成的。线粒体还负责从头合成黄素腺嘌呤二核苷酸(FAD),用于组蛋白去甲基化。线粒体的氧化磷酸化是ATP的主要来源。狼疮T细胞中ATP的消耗可能会影响MAT活性以及单磷酸腺苷(AMP)活化的蛋白激酶(AMPK),后者会磷酸化组蛋白并抑制雷帕霉素(mTOR)的作用。反过来,mTOR可以修饰表观遗传途径,包括甲基化,去甲基化和组蛋白磷酸化,并介导SLE中增强的T细胞活化。线粒体除了在新陈代谢中的作用外,还是活性氧中间体(ROI)的主要来源,它可以激活mTOR并调节组蛋白和DNA修饰酶的活性。在这篇综述中,我们将重点关注表观遗传调控所需的代谢物来源,以及基础代谢途径的通量如何影响基因表达。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号