...
首页> 外文期刊>Australian Journal of Soil Research >Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
【24h】

Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model

机译:使用电磁感应和分层空间回归模型对阳离子交换能力进行场级数字土壤制图

获取原文
获取原文并翻译 | 示例

摘要

At the field level the demand for spatial information of soil properties is rapidly increasing owing to its requirements in precision agriculture and soil management. One of the most important properties is the cation exchange capacity (CEC, cmol(+)/kg) because it is an index of the shrink-swell potential and hence is a measure of soil structural resilience to tillage. However, CEC is time-consuming and expensive to measure. Various ancillary datasets and statistical methods can be used to predict CEC, but there is little scientific literature which implements this approach to map CEC or addresses the issue of the amount of ancillary data required to maximise precision and minimise bias of spatial prediction at the field level. We compare a standard least-squares multiple linear regression (MLR) model which includes 2 proximally sensed (EM38 and EM31), 3 remotely sensed (Red, Green and Blue spectral brightness), and 2 trend surface (Easting and Northing) variables as ancillary data or independent variables, and a stepwise MLR model which only includes the statistically valid EM38 signal data and the Easting trend surface vector. The latter is used as the basis for developing a hierarchical spatial regression model to predict CEC. The reliability of the model is analysed by comparing prediction precision (root mean square error) and bias (mean error) using degraded EM38 transect spacing (i.e. 96, 144, 192, 240, and 288m) and comparing these with predictions achieved with the 48-m spacing. We conclude that the EM38 data available on the 96- and 144-m spacing are suitable at a reconnaissance level (i.e. broad-scale farming) and 24- or 48-m spacing are suitable at smaller levels where detailed information is necessary for siting the location of water reservoirs. In terms of soil management, CEC predictions determine where suitable subsoil exists for the purpose of soil profile inversion to improve the structural resilience of a topsoil that is susceptible to dispersion and surface crusting.
机译:在田间,由于对精确农业和土壤管理的需求,对土壤特性空间信息的需求正在迅速增加。阳离子交换容量(CEC,cmol(+)/ kg)是最重要的特性之一,因为它是收缩膨胀势的指标,因此是衡量土壤结构对耕作的抵抗力的指标。但是,CEC的测量既费时又昂贵。可以使用各种辅助数据集和统计方法来预测CEC,但是很少有科学文献采用这种方法来绘制CEC或解决在现场水平上最大化精度和最小化空间预测偏差所需的辅助数据量的问题。 。我们比较了标准的最小二乘多元线性回归(MLR)模型,该模型包括2个近端感测的(EM38和EM31),3个遥测感测的(红色,绿色和蓝色光谱亮度)和2个趋势面(东和北)辅助变量数据或自变量,以及仅包含统计上有效的EM38信号数据和Easting趋势面向量的逐步MLR模型。后者用作开发预测CEC的分层空间回归模型的基础。通过使用退化的EM38样条间距(即96、144、192、240和288m)比较预测精度(均方根误差)和偏差(均值误差),并将其与使用48 -m间距。我们得出的结论是,在96米和144米间距上可获得的EM38数据适用于侦察级(即大规模耕作),而24米或48米间距则适用于较小级别(需要详细信息来选址)。水库的位置。在土壤管理方面,CEC预测确定了合适的地下土壤存在的位置,以进行土壤剖面反演,以提高易于分散和表面结皮的表层土壤的结构弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号