首页> 外文期刊>Atmospheric Measurement Techniques >The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation
【24h】

The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

机译:楚格峰辐射封闭实验,用于量化地面和太阳红外上的水蒸气吸收量-第2部分:精确的高分辨红外分辨率的表面太阳辐射红外测量值的准确校准

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (<2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm(-1), but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2 sigma) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1% in window regions and up to 1.7% within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1% of the 2500 to 7800 cm(-1) range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7% of the spectral range.
机译:水蒸气吸收的定量知识对于精确的气候模拟至关重要。在这种情况下,一个开放的科学问题涉及大气温度下近红外(NIR)中水蒸气连续体的强度,仍有待通过测量来量化。这个问题可以通过使用太阳吸收光谱的辐射封闭实验解决。但是,用于水蒸气连续性定量的光谱必须进行辐射校准。我们首次提出了一种在大气封闭实验中为NIR水蒸气连续体定量产生足够校准精度的方法。我们的方法将Langley方法与高温黑体校准源(<2000 K)的光谱辐射度测量相结合。该校准方案在2500至7800 cm(-1)的光谱范围内得到了证明,但是对该方法的微小修改也使得在整个NIR光谱范围的其余部分也可以进行校准。排除由于大气外太阳光谱(ESS)的不准确所造成的影响,所得不确定性(2 sigma)在窗口区域低于1%,在吸收带内高达1.7%。校准的总体辐射精确度取决于ESS的不确定性,目前在NIR上尚未达成牢固的共识。但是,正如配套出版物Reichert和Sussmann(2016)所示,对于本研究的特定目的,即封闭实验中水蒸气连续体的定量化,ESS不确定度仅次要重要性。校准不确定性的估计可以通过对校准自洽性的研究得到证实,它可以在2500至7800 cm(-1)范围的91.1%的估计误差范围内产生兼容的结果。此外,将一组校准光谱与辐射传递模型计算结果进行比较,可以得出在光谱范围的97.7%的估计误差范围内的一致结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号