...
首页> 外文期刊>Atmospheric Measurement Techniques >The identification and tracking of volcanic ash using the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI)
【24h】

The identification and tracking of volcanic ash using the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI)

机译:使用Meteosat第二代(MSG)旋转增强型可见光和红外成像仪(SEVIRI)识别和跟踪火山灰

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we develop an algorithm based on combining spectral, spatial, and temporal thresholds from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) daytime measurements to identify and track different aerosol types, primarily volcanic ash. Contemporary methods typically do not use temporal information to identify ash. We focus not only on the identification and tracking of volcanic ash during the Eyjafjallajokull volcanic eruption period beginning in 14 April and ending 17 May 2010 but also on a pixel-level classification method for separating various classes in the SEVIRI images. Three case studies on 13, 16, and 17 May are analyzed in extensive detail with other satellite data including from the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), and Facility for Airborne Atmospheric Measurements (FAAM) BAe146 aircraft data to verify the aerosol spatial distribution maps generated by the SEVIRI algorithm. Our results indicate that the SEVIRI algorithm is able to track volcanic ash when the solar zenith angle is lower than about 65°. Furthermore, the BAe146 aircraft data show that the SEVIRI algorithm detects nearly all ash regions when AOD > 0.2. However, the algorithm has higher uncertainties when AOD is < 0.1 over water and AOD < 0.2 over land. The ash spatial distributions provided by this algorithm can be used as a critical input and validation for atmospheric dispersion models simulated by Volcanic Ash Advisory Centers (VAACs). Identifying volcanic ash is an important first step before quantitative retrievals of ash concentration can be made.
机译:在本文中,我们开发了一种算法,该算法基于对地静止旋转增强型可见光和红外成像仪(SEVIRI)白天测量的光谱,空间和时间阈值的组合,以识别和跟踪不同的气溶胶类型,主要是火山灰。现代方法通常不使用时间信息来识别灰分。我们不仅专注于识别和追踪从2010年4月14日至2010年5月17日的艾雅菲亚德拉冰盖火山喷发期的火山灰,还着重于分离SEVIRI图像中各个类别的像素级分类方法。 5月13日,16日和17日的三个案例研究与其他卫星数据进行了详尽的分析,包括中分辨率成像光谱仪(MODIS),多角度成像光谱仪(MISR)和机载大气测量设施(FAAM)BAe146飞机数据,以验证SEVIRI算法生成的气溶胶空间分布图。我们的结果表明,当太阳天顶角小于约65°时,SEVIRI算法能够跟踪火山灰。此外,BAe146飞机数据显示,当AOD> 0.2时,SEVIRI算法几乎可以检测到所有灰烬区域。但是,当水上AOD <0.1和陆地上AOD <0.2时,该算法具有更高的不确定性。该算法提供的灰分空间分布可用作火山灰咨询中心(VAAC)模拟的大气扩散模型的关键输入和验证。在可以定量取回灰分浓度之前,识别火山灰是重要的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号