首页> 外文期刊>Astroparticle physics >GEM-based TPC with CCD imaging for directional dark matter detection
【24h】

GEM-based TPC with CCD imaging for directional dark matter detection

机译:基于GEM的TPC和CCD成像,用于定向暗物质检测

获取原文
获取原文并翻译 | 示例
           

摘要

The most mature directional dark matter experiments at present all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal-to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1 x 10(5) were obtained in 100 Torr of pure CF4 by a cascade of three standard CERN GEMs each with a 140 mu m pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below similar to 10 keVee (similar to 23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss. (C) 2016 Elsevier B.V. All rights reserved.
机译:目前,最成熟的定向暗物质实验都利用低压气体时间投影室(TPC)技术。我们讨论了该技术的一些挑战,要实现最佳灵敏度与经济高效地扩大目标之间的平衡,就需要在较大的参数空间上进行优化。为此,至关重要的是精确测量电子和核反冲轨迹的基本特性,直至可检测到的最低能量。这样的测量对于为背景判别和方向敏感性提供基准是必要的,这些基准可用于将来针对定向暗物质实验的优化研究。在本文中,我们描述了一种小型,高分辨率,高信噪比,基于GEM的TPC,并为此目的设计了2D CCD读数。探测器的性能使用α粒子,X射线,γ射线和中子来表征,从而能够对电子和核后坐力轨迹进行详细测量。通过将三个标准CERN GEM(每一个间距为140μm)串联起来,在100 Torr的纯CF4中获得了大于1 x 10(5)的稳定有效气体增益。 GEM放大和CCD读数的高信噪比和亚毫米空间分辨率,以及低扩散,使得电子和核反冲之间的出色背景辨别能力低于10 keVee(类似于23 keVr氟反冲) 。例如,通过降低压力并利用完整的3D轨道重建,甚至可以实现检测低质量WIMP所需的更低阈值。讨论了这些和其他改进途径,以及能量损失物理学可能施加的基本限制。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号