...
首页> 外文期刊>The American Journal of Clinical Nutrition: Official Journal of the American Society for Clinical Nutrition >Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest.
【24h】

Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest.

机译:Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

BACKGROUND: Muscle inactivity and low energy intake commonly occur in persons with acute or chronic disease, in astronauts during space flight, and during aging. OBJECTIVE: We used a crossover design to investigate the effects of the interactions of inactivity and calorie restriction on whole-body composition and protein kinetic regulation in 9 healthy volunteers. DESIGN: Lean body mass (LBM) was measured by using dual-energy X-ray absorptionmetry before and at the end of 14-d periods of bed rest (B) and controlled ambulation (A) in patients receiving eucaloric (E) or hypocaloric (H) (approximately 80% of total energy expenditure) diets. Whole-body leucine kinetics were determined at the end of the 4 study periods by using a standard stable-isotope technique in the postabsorptive state and during a 3-h infusion of a 0.13 g x kg LBM(-1) x h(-1) amino acid mixture. RESULTS: In the postabsorptive state, we found a significant (P = 0.04) bed rest x hypocaloric diet interaction for the rate of leucine oxidation, an index of net protein catabolism (A+E: 0.23 +/- 0.01; B+E: 25 +/- 0.01; A+H: 0.23 +/- 0.01; B+H: 0.28 +/- 0.01 micromol x min(-1) x kg LBM(-1)). Bed rest significantly (P < 0.01) decreased amino acid-mediated stimulation of nonoxidative leucine disappearance, an index of protein synthesis (A+E: 35 +/- 2%; B+E: 30 +/- 2%; A+H: 41 +/- 3%; B+H: 32 +/- 2%). B+H decreased LBM by 1.10 +/- 0.1 kg, which is significantly (P < 0.01) greater than the decrease seen with A+E, A+H, or B+E. CONCLUSION: Calorie restriction enhanced the catabolic response to inactivity by combining greater protein catabolism in the postabsorptive state with an impaired postprandial anabolic utilization of free amino acids.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号