...
首页> 外文期刊>Journal of engineering for gas turbines and power: Transactions of the ASME >Effects of Bearing Stiffness Anisotropy on Hydrostatic Micro Gas Journal Bearing Dynamic Behavior
【24h】

Effects of Bearing Stiffness Anisotropy on Hydrostatic Micro Gas Journal Bearing Dynamic Behavior

机译:Effects of Bearing Stiffness Anisotropy on Hydrostatic Micro Gas Journal Bearing Dynamic Behavior

获取原文
获取原文并翻译 | 示例

摘要

The high-speed microhydrostatic gas journal bearings used in the high-power density MIT microengines are of very low aspect ratio with an L/D of less than 0.1 and are running at surface speeds of order 500 m/s. These ultra-short high-speed bearings exhibit whirl instability limits and a dynamic behavior much different from conventional hydrostatic gas bearings. The design space for stable high-speed operation is confined to a narrow region and involves singular behavior (Spakovszky and Liu, 2005, "Scaling Laws for Ultra-Short Hydrostatic Gas Journal Bearings, " ASME J. Vibr. Acoust., 127(3), pp. 254-261). This together with the limits on achievable fabrication tolerance, which can be achieved in the silicon chip manufacturing technology, severely affects bearing operability and limits the maximum achievable speeds of the microturbomachinery. This paper introduces a novel variation of the axial-flow hydrostatic micro gas journal bearing concept, which yields anisotropy in bearing stiffness. By departing from axial symmetry and introducing biaxial symmetry in hydrostatic stiffness, the bearing's top speed is increased and fabrication tolerance requirements are substantially relieved making more feasible extended stable high-speed bearing operation. The objectives of this work are: (i) to characterize the underlying physical mechanisms and the dynamic behavior of this novel bearing concept and (ii) to report on the design, implementation, and test of this new microbearing technology. The technical approach involves the combination of numerical simulations, experiment, and simple, first-principles-based modeling of the gas bearing flow field and the rotordynamics. A simple description of the whirl instability threshold with stiffness anisotropy is derived explaining the instability mechanisms and linking the governing parameters to the whirl ratio and stability limit. An existing analytical hydrostatic gas bearing model is extended and modified to guide the bearing design with stiffness anisotropy. Numerical simulations of the full nonlinear governing equations are conducted to validate the theory and the novel bearing concept. Experimental results obtained from a microbearing test device are presented and show good agreement between the theory and the measurements. The theoretical increase in achievable bearing top speed and the relief in fabrication tolerance requirements due to stiffness anisotropy are quantified and important design implications and guidelines for micro gas journal bearings are discussed.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号