首页> 外文期刊>Journal of engineering for gas turbines and power: Transactions of the ASME >NO{sub}x Formation in High-Pressure Jet-Stirred Reactors With Significance to Lean-Premixed Combustion Turbines
【24h】

NO{sub}x Formation in High-Pressure Jet-Stirred Reactors With Significance to Lean-Premixed Combustion Turbines

机译:高压喷射搅拌反应堆NO{sub}x的形成对稀薄预混燃烧涡轮机具有重要意义

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Measurements of NO{sub}x and CO in methane-fired, lean-premixed, high-pressure jet-stirred reactors (HP-JSRs), independently obtained by two researchers, are well predicted assuming simple chemical reactor models and the GRI 3.0 chemical kinetic mechanism. The single-jet HP-JSR is well modeled for NO{sub}x and CO assuming a single PSR for Damkohler number below 0.15. Under these conditions, the estimates of flame thickness indicate the flame zone, that is, the region of rapid oxidation and large concentrations of free radicals, fully fills the HP-JSR. For Damkohler number above 0.15, that is, for longer residence times, the NO{sub}x and CO are well modeled assuming two perfectly stirred reactors (PSRs) in series, representing a small flame zone followed by a large post-flame zone. The multijet HP-JSR is well modeled assuming a large PSR (over 88 of the reactor volume) followed by a short PFR, which accounts for the exit region of the HP-JSR and the short section of exhaust prior to the sampling point. The Damkohler number is estimated between 0.01 and 0.03. Our modeling shows the NO{sub}x formation pathway contributions. Although all pathways, including Zeldovich (under the influence of super-equilibrium O-atom), nitrous oxide, Fenimore prompt, and NNH, contribute to the total NO{sub}x predicted, of special note are the following findings: (1) NO{sub}x formed by the nitrous oxide pathway is significant throughout the conditions studied; and (2) NO{sub}x formed by the Fenimore prompt pathway is significant when the fuel-air equivalence ratio is greater than about 0.7 (as might occur in a piloted lean-premixed combustor) or when the residence time of the flame zone is very short. The latter effect is a consequence of the short lifetime of the CH radical in flames.
机译:假设简单的化学反应器模型和 GRI 3.0 化学动力学机理,可以很好地预测由两名研究人员独立获得的甲烷燃烧、稀薄预混合、高压喷射搅拌反应器 (HP-JSR) 中 NO{sub}x 和 CO 的测量值。假设 Damkohler 数的单个 PSR 低于 0.15,则对单射流 HP-JSR 进行了很好的 NO{sub}x 和 CO 建模。在这些条件下,火焰厚度的估计表明火焰区,即快速氧化和大浓度自由基的区域,完全充满HP-JSR。对于大于 0.15 的 Damkohler 数,即对于较长的停留时间,假设两个完全搅拌的反应器 (PSR) 串联,则 NO{sub}x 和 CO 建模良好,代表一个小的火焰区,然后是大的火焰后区。假设 PSR 较大(超过反应器体积的 88%),然后是较短的 PFR,这说明了 HP-JSR 的出口区域和采样点之前的短排气段,对多射流 HP-JSR 进行了很好的建模。Damkohler 数估计在 0.01 到 0.03 之间。我们的模型显示了NO{sub}x形成途径的贡献。尽管所有途径,包括 Zeldovich(在超平衡 O 原子的影响下)、一氧化二氮、Fenimore 提示和 NNH,都有助于预测的总 NO{sub}x,但特别值得注意的是以下发现:(1) 一氧化二氮途径形成的 NO{sub}x 在整个研究条件下是显着的;(2)当燃料-空气当量比大于约0.7(在先导稀薄预混燃烧器中可能发生)或火焰区停留时间很短时,Fenimore快速通路形成的NO{sub}x显著。后一种效应是CH自由基在火焰中寿命短的结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号