...
首页> 外文期刊>ASAIO journal >Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
【24h】

Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.

机译:开发和验证用于模拟搏动性左心室辅助设备的计算流体动力学方法。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An unsteady computational fluid dynamic methodology was developed so that design analyses could be undertaken for devices such as the 50cc Penn State positive-displacement left ventricular assist device (LVAD). The piston motion observed in vitro was modeled, yielding the physiologic flow waveform observed during pulsatile experiments. Valve closure was modeled numerically by locally increasing fluid viscosity during the closed phase. Computational geometry contained Bjork-Shiley Monostrut mechanical heart valves in mitral and aortic positions. Cases for computational analysis included LVAD operation under steady-flow and pulsatile-flow conditions. Computations were validated by comparing simulation results with previously obtained in vitro particle image velocimetry (PIV) measurements. The steady portion of the analysis studied effects of mitral valve orientation, comparing the computational results with in vitro data obtained from mock circulatory loop experiments. The velocity field showed good qualitative agreement with the in vitro PIV data. The pulsatile flow simulations modeled the unsteady flow phenomena associated with a positive-displacement LVAD operating through several beat cycles. Flow velocity gradients allowed computation of the scalar wall strain rate, an important factor for determining hemodynamics of the device. Velocity magnitude contours compared well with PIV data throughout the cycle. Computational wall shear rates over the pulsatile cycle were found to be in the same range as wall shear rates observed in vitro.
机译:开发了一种不稳定的计算流体动力学方法,以便可以对诸如50cc Penn State正排量左心室辅助设备(LVAD)之类的设备进行设计分析。对体外观察到的活塞运动进行建模,产生在脉动实验期间观察到的生理流动波形。通过在关闭阶段局部增加流体粘度来数值模拟阀门关闭。计算几何包含二尖瓣和主动脉位置的Bjork-Shiley Monostrut机械心脏瓣膜。计算分析的案例包括在稳定流量和脉动流量条件下的LVAD操作。通过将模拟结果与先前获得的体外粒子图像测速(PIV)测量值进行比较,可以验证计算结果。分析的稳定部分研究了二尖瓣定向的影响,将计算结果与从模拟循环回路实验获得的体外数据进行了比较。速度场与体外PIV数据显示出良好的定性一致性。脉动流模拟对与运行数个拍周期的正排量LVAD相关的非稳态流现象进行了建模。流速梯度允许计算标量壁应变率,这是确定设备血液动力学的重要因素。在整个周期中,速度幅度等高线与PIV数据进行了比较。发现脉动周期内的计算壁剪切速率与体外观察到的壁剪切速率在相同范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号