...
首页> 外文期刊>Journal of engineering for gas turbines and power: Transactions of the ASME >Improved Gas Turbine Efficiency Through Alternative Regenerator Configuration
【24h】

Improved Gas Turbine Efficiency Through Alternative Regenerator Configuration

机译:Improved Gas Turbine Efficiency Through Alternative Regenerator Configuration

获取原文
获取原文并翻译 | 示例

摘要

An alternative configuration for a regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than either simple or conventional regenerative cycles operating under the same conditions. The essence of the scheme is to preheat compressor discharge air with high-temperature combustion gases before the latter are fully expanded across the turbine. The efficiency is improved because air enters the combustor at a higher temperature, and hence heat addition in the combustor occurs at a higher average temperature. The heat exchanger operating conditions are more demanding than for a conventional regeneration configuration, but well within the capability of modern heat exchangers. Models of cycle performance exhibit several percentage points of improvement relative to either simple cycles or conventional regeneration schemes. The peak efficiencies of the alternative regeneration configuration occur at optimum pressure ratios that are significantly lower than those required for the simple cycle. For example, at a turbine inlet temperature of 1300℃ (2370°F), the alternative regeneration scheme results in cycle efficiencies of 50 percent for overall pressure ratios of 22, whereas simple cycles operating at the same temperature would yield efficiencies of only 43.8 percent at optimum pressure ratios of 50, which are not feasible with current compressor designs. Model calculations for a wide range of parameters are presented, as are comparisons with simple and conventional regeneration cycles.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号