首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Theoretical Investigation of Nonlinear Time-Dependent Behavior of Two-Way High-Strength Concrete Walls
【24h】

Theoretical Investigation of Nonlinear Time-Dependent Behavior of Two-Way High-Strength Concrete Walls

机译:双向高强混凝土墙体非线性时变行为的理论研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

High-strength concrete (HSC) walls have been increasingly used in the past decades. However, the time-dependent behavior of HSC wall panels in two-way action was not investigated, and the time effect of creep is not included in the design codes in most countries. For this purpose, the nonlinear long-term behavior of two-way HSC wall is investigated in this paper. A theoretical model is developed using time-stepping analysis considering geometric nonlinearity and creep of concrete. A rheological material model that is based on the generalized Maxwell chain is adopted to model the concrete creep. Von Karman plate theory is used to derive the incremental governing equations. The equations are solved numerically at each time step based on a Fourier series expansion of the deformations and loads and numerical multiple shooting method. It shows that the model can effectively predict the time-dependent behavior of two-way HSC panels, where the out-of-plane deflection and internal bending moments increase with time due to the combined effects of creep and geometric nonlinearity, which may ultimately lead to creep buckling failures. A parametric study shows that the long-term behavior of the panel is very sensitive to the in-plane load level and eccentricity, slenderness ratio, aspect ratio, and edge support conditions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号