...
首页> 外文期刊>Materials Chemistry Frontiers >Fast and stable charge transfer at the lithium-sulfide (electrolyte) interface via an in situ solidified Li+-conductive interlayer
【24h】

Fast and stable charge transfer at the lithium-sulfide (electrolyte) interface via an in situ solidified Li+-conductive interlayer

机译:通过原位固化的 Li+ 导电中间层在锂-硫化物(电解质)界面处快速稳定地转移电荷

获取原文
获取原文并翻译 | 示例
           

摘要

With high Li+ conductivity and mechanical plasticity, sulfide electrolytes such as glassy 75Li2S-25P2S5 (LPS) have become promising solid electrolytes for building rechargeable lithium-metal batteries. However, sulfide electrolytes usually show unstable interfacial electrochemistry versus Li metal, which could cause parasitic reactions and dendrite formation, thus leading to rapid performance fading and battery failure. In this work, we show that, by applying a LiF-rich in situ solidified Li+-conductive interlayer (LCI), the interfacial contact and charge transfer stability between LPS and Li metal are notably improved, which leads to inhibition of electrolyte decomposition and dendrite-free Li plating/stripping at the interface. At room temperature, Li-Li symmetric cells assembled from LCI-modified LPS electrolyte demonstrate stable cycling performance for over 1500 hours at 0.1 mA cm2, and a high critical current density of up to 5 mA cm2. This work sheds light on the rational design of the Li-sulfide interface towards practical realization of highenergy solid-state batteries.
机译:李+高导电性和机械硫化可塑性,电解质,如玻璃75 li2s-25p2s5 (LPS)已经成为有前途的固体电解质为构建可充电锂金属电池。电解质通常显示不稳定的界面电化学与李金属,这可能导致寄生反应和树突的形成,从而导致性能衰减和迅速电池故障。应用LiF-rich原位固化李+导电层间(LCI),界面接触和有限合伙人之间的电荷转移的稳定性和李金属明显改善,导致电解质分解和抑制李dendrite-free电镀/剥离接口。细胞从LCI-modified有限合伙人电解质组装展示稳定的循环性能马1500小时0.1平方厘米,高的关键电流密度的马5平方厘米。揭示了理性的设计Li-sulfide接口对实际实现高能固态电池的。

著录项

  • 来源
    《Materials Chemistry Frontiers》 |2023年第12期|2405-2410|共6页
  • 作者单位

    CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Be;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号