首页> 外文期刊>Additive Manufacturing >Failure modes in dual layer thickness Laser Powder Bed Fusion components using a novel post-mortem reconstruction technique
【24h】

Failure modes in dual layer thickness Laser Powder Bed Fusion components using a novel post-mortem reconstruction technique

机译:使用新型事后重建技术的双层厚度激光粉末床熔融组件的失效模式

获取原文
获取原文并翻译 | 示例
           

摘要

To exploit the design freedoms of Powder Bed Fusion, parameters can be varied within sub-volumes of components to achieve the optimal part for both service conditions and manufacturing productivity. This involves prioritising mechanical strength in areas of structural significance and high volumetric build rates in areas of low structural significance. In theory, a component with similar mechanical behaviour to that seen in standard Laser Powder Bed Fusion parts can be built in significantly less time and at a reduced cost. In practice however, the boundary between such regions is yet to be understood and discretising components into sub-volumes can induce interfacial defects. In this study, an in-depth analysis of interfaces between disparate layer thickness volumes in single components has been explored, to gain information vital to solving interface quality issues so that LPBF design freedoms can be fully exploited. A novel 3D reconstruction technique has been demonstrated to characterise transient plastic behaviour of interfacial pores post-fracture. This technique enables post-mortem evaluation of additively manufactured parts and tracking of pore deformation during subsequent mechanical testing. X-ray Computed Tomography (XCT) identified interfacial pores up to 170 mu m Feret diameter, with a voxel resolution of 6 mu m. Micro tensile testing with in-situ microscopy exhibited a real-time mechanical response, observing evidence that these interfacial defects lead to fracture at interface locations. The 3D reconstruction technique found that pores constricted 10.0 - 14.1% in the x direction and 10.3 - 14.6% in the y direction after fracture - normal to the loading direction. These findings contribute towards improving Additively Manufactured biomedical implants and airframe components with reduced time and cost.
机译:利用粉末床的设计自由融合,参数可以不同sub-volumes的组件来实现最优使用条件和一部分制造业生产力。优先领域的机械强度结构意义和高体积利率在低结构的意义。具有类似机械的理论,一个组件行为,在标准激光粉末床上融合部分可以显著建成的更少的时间和降低成本。然而,这些地区之间的边界被理解和discretising组件sub-volumes可以诱发界面缺陷。这项研究中,深入分析了接口不同的层厚度之间的卷单一组件已经被探索,获得信息对解决界面质量至关重要问题,以便LPBF设计可以完全自由利用。已被证实能描述瞬态塑料界面毛孔的行为集中。加法制造的零部件和评估在后续追踪孔隙变形机械测试。(XCT)确定界面孔隙170μmFeret直径,立体像素分辨率6亩m。微拉伸试验与原位显微镜表现出一个实时机械反应,观察证据表明这些界面缺陷导致骨折在界面的位置。重建技术发现毛孔在x方向上和狭隘的10.0 - 14.1%10.3 - 14.6%的骨折,后在y方向上正常的加载方向。有利于改善分析生物医学植入物和机体制造组件与减少时间和成本。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号