...
首页> 外文期刊>Nanoscale >Nanoetching TiO2 nanorod photoanodes to induce high-energy facet exposure for enhanced photoelectrochemical performance
【24h】

Nanoetching TiO2 nanorod photoanodes to induce high-energy facet exposure for enhanced photoelectrochemical performance

机译:纳米蚀刻TiO2纳米棒光阳极诱导高能刻面曝光,增强光电化学性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Crystal facet engineering is considered as an effective way to improve photoelectrochemical (PEC) performance. Here, we have developed a nanoetching technology (TiO2 → TiO2/Bi4Ti3O12 → TiO2/BiVO4 → etching-TiO2) to treat rutile TiO2 nanorod films. Interestingly, the technology can induce the exposure of a large number of high energy (101) faces, and the etching-TiO2 film (E-TiO2) showed a significantly enhanced PEC performance. A dynamic study indicates that charge separation and transfer have been obviously improved by such a nanoetching technology. In particular, the charge transfer efficiency (ηtrans) of E-TiO2 reaches 93.4% at 1.23 V vs. RHE without any loaded cocatalyst. The mechanism of PEC performance enhanced by the strategy is experimentally and theoretically unraveled. The improvement of PEC performance is mainly attributed to the shorter distance between H and the neighboring O-b for the HO* intermediates of the rutile (101) facet, which can reduce the energy barrier for the OER. Besides, the driving force for spatial charge separation between the (110) and (101) facets can promote charge separation. This work offers a new and versatile nanotechnology to induce the exposure of the high energy crystal facets and improve the PEC performance.
机译:晶体工程被认为是一个方面有效的方法来提高光电化学(压电陶瓷)的性能。奈米棒的电影。诱导的接触大量的高能源(101)的脸,和etching-TiO2电影(E-TiO2)显示显著提高压电陶瓷表演电荷分离和转移这种nanoetching明显提高了技术。效率(η反式)E-TiO2达到93.4%1.23 V和流值没有任何加载助催化剂。压电陶瓷的性能增强的机制策略是实验和理论上瓦解。主要归因于较短的距离H和邻近O-b HO *中间体的金红石(101)方面OER可以减少能量势垒。此外,空间电荷的驱动力之间的分离(110)和(101)面促进电荷分离。和多功能纳米技术诱导接触和高能的水晶方面提高压电陶瓷的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号