首页> 外文期刊>Nanoscale >Engineering graphene-based electrodes for optical neural stimulation
【24h】

Engineering graphene-based electrodes for optical neural stimulation

机译:用于光学神经刺激的石墨烯基电极工程

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Graphene-based materials (GBMs) have been investigated in recent years with the aim of developing flexible interfaces to address a range of neurological disorders, where electrical stimulation may improve brain function and tissue regeneration. The recent discovery that GBM electrodes can generate an electrical response upon light exposure has inspired the development of non-genetic approaches capable of selectively modulating brain cells without genetic manipulation (i.e., optogenetics). Here, we propose the conjugation of graphene with upconversion nanoparticles (UCNPs), which enable wireless transcranial activation using tissue-penetrating near-infrared (NIR) radiation. Following a design of experiments approach, we first investigated the influence of different host matrices and dopants commonly used to synthesize UCNPs in the electrical response of graphene. Two UCNP formulations achieving optimal enhancement of electrical conductivity upon NIR activation at λ = 780 or 980 nm were identified. These formulations were then covalently attached to graphene nanoplatelets following selective hydroxyl derivatization. The resulting nanocomposites were evaluated in vitro using SH-SY5Y human neuroblastoma cells. NIR activation at λ = 980 nm promoted cell proliferation and downregulated neuronal and glial differentiation markers, suggesting the potential application of GBMs in minimally invasive stimulation of cells for tissue regeneration.
机译:石墨烯材料(本研究)近年来,目的是调查开发灵活的接口地址范围神经紊乱的电刺激可以提高大脑功能和组织再生。电极可以生成电子反应在光照射激发了发展非遗传学方法的选择性的能力没有基因调节脑细胞操作(例如,光遗传学)。提出了结合的石墨烯上转换纳米粒子(UCNPs),启用无线颅激活使用tissue-penetrating近红外(NIR)辐射。实验设计方法后,我们第一次调查的影响不同主机矩阵和掺杂物常用的合成UCNPs的电反应石墨烯。在近红外光谱增强导电性激活在λ= 780或980海里被确定。这些配方是共价结合石墨烯后nanoplatelets选择性羟基衍生化。纳米复合材料进行评估在体外使用SH-SY5Y人类神经母细胞瘤细胞。在λ= 980 nm促进细胞增殖和表达下调神经元和神经胶质的分化标记,表明的潜在应用本研究在微创的刺激细胞组织再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号