首页> 外文期刊>Applied optics >Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model
【24h】

Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model

机译:利用频域混合蒙特卡罗扩散模型确定两层混浊介质的光学性质

获取原文
获取原文并翻译 | 示例
           

摘要

The general two-layer inverse problem in biomedical photon migration is to estimate the absorption and scattering coefficients of each layer as well as the top-layer thickness. We attempted to solve this problem, using experimental and simulated spatially resolved frequency-domain (FD) reflectance for optical properties typical of skin overlying muscle or skin overlying fat in the near infrared. Two forward models of light propagation were used: a two-layer diffusion solution [Appl. Opt. 37, 779 (1998)] and a hybrid Monte Carlo (MC) diffusion model [Appl. Opt. 37, 7401 (1998)]. MC-simulated FD reflectance data were fitted as relative measurements to the hybrid and the pure diffusion models. It was found that the hybrid model could determine all the optical properties of the two-layer media studied to ~5%. Also, the same accuracy could be achieved by means of fitting MC-simulated cw reflectance data as absolute measurements, but fitting them as relative ones is an ill-posed problem. In contrast, two-layer diffusion could not retrieve the top-layer optical properties as accurately for FD data and was ill-posed for both relative and absolute cw data. The hybrid and the pure diffusion models were also fitted to experimental FD reflectance measurements from two-layer tissue-simulating phantoms representative of skin-on-fat and skin-on-muscle baseline optical properties. Both the hybrid and the diffusion models could determine the optical properties of the lower layer. The hybrid model demonstrated its potential to retrieve quantitatively the transport scattering coefficient of skin (the upper layer), which was not possible with the pure diffusion model. Systematic discrepancies between model and experiment may compromise the accuracy of the deduced top-layer optical properties. Identifying and eliminating such discrepancies is critical to practical application of the method.
机译:生物医学光子迁移中的一般两层逆问题是估计每一层的吸收系数和散射系数以及顶层厚度。我们尝试使用实验性和模拟性的空间分辨频域(FD)反射率来解决此问题,该反射率具有典型的光学特性,这些特性通常位于皮肤上的肌肉或皮肤上的脂肪在近红外中。使用了两种正向的光传播模型:两层扩散解决方案[Appl。选择。 37,779(1998)]和混合蒙特卡洛(MC)扩散模型[Appl。选择。 37,7401(1998)]。将MC模拟的FD反射率数据拟合为混合模型和纯扩散模型的相对测量值。结果表明,混合模型可以将所研究的两层介质的所有光学性质确定为〜5%。同样,通过将MC模拟的CW反射率数据拟合为绝对测量值可以实现相同的精度,但是将它们拟合为相对的测量值是一个不适定的问题。相比之下,两层扩散无法像FD数据那样准确地检索顶层光学特性,而对于相对和绝对cw数据而言都是不适定的。混合模型和纯扩散模型也适用于表示脂肪皮肤和肌肉皮肤基线光学特性的两层组织模拟体模的实验FD反射率测量。混合模型和扩散模型都可以确定下层的光学特性。混合模型证明了其潜在地定量检索皮肤(上层)的传输散射系数的潜力,而纯扩散模型则不可能。模型和实验之间的系统差异可能会损害推断的顶层光学特性的准确性。识别和消除这种差异对于该方法的实际应用至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号