...
首页> 外文期刊>Applied optics >OPTICAL BINARY DE BRUIJN NETWORKS FOR MASSIVELY PARALLEL COMPUTING - DESIGN METHODOLOGY AND FEASIBILITY STUDY
【24h】

OPTICAL BINARY DE BRUIJN NETWORKS FOR MASSIVELY PARALLEL COMPUTING - DESIGN METHODOLOGY AND FEASIBILITY STUDY

机译:用于大规模并行计算的光学二元DE BRUIJN网络-设计方法和可行性研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The interconnection network structure can be the deciding and limiting factor in the cost and the performance of parallel computers. One of the most popular point-to-point interconnection networks for parallel computers today is the hypercube. The regularity, logarithmic diameter, symmetry, high connectivity, fault tolerance, simple routing, and reconfigurability (easy embedding of other network topologies) of the hypercube make it a very attractive choice for parallel computers. Unfortunately the hypercube possesses a major drawback, which is the complexity of its node structure: the number of links per node increases as the network grows in size. As an alternative to the hypercube, the binary de Bruijn (BdB) network has recently received much attention. The BdB not only provides a logarithmic diameter, fault tolerance, and simple routing but also requires fewer links than the hypercube for the same network size. Additionally, a major advantage of the BdB network is a constant node degree: the number of edges per node is independent of the network size. This makes it very desirable for large-scale parallel systems. However, because of its asymmetrical nature and global connectivity, it poses a major challenge for VLSI technology. Optics, owing to its three-dimensional and global-connectivity nature, seems to be very suitable for implementing BdB networks. We present an implementation methodology for optical BdB networks. The distinctive feature of the proposed implementation methodology is partitionability of the network into a few primitive operations that can be implemented efficiently. We further show feasibility of the presented design methodology by proposing an optical implementation of the BdB network. [References: 48]
机译:互连网络结构可能是并行计算机的成本和性能的决定性和限制性因素。超立方体是当今用于并行计算机的最流行的点对点互连网络之一。超立方体的规则性,对数直径,对称性,高连接性,容错性,简单的路由和可重新配置性(易于嵌入其他网络拓扑结构)使其成为并行计算机的极具吸引力的选择。不幸的是,超立方体具有一个主要缺点,那就是其节点结构的复杂性:每个节点的链接数随着网络规模的增长而增加。作为超立方体的替代方案,二进制de Bruijn(BdB)网络最近受到了广泛关注。对于相同的网络大小,BdB不仅提供对数直径,容错性和简单的路由,而且比超立方体需要更少的链接。另外,BdB网络的主要优点是节点度恒定:每个节点的边数与网络大小无关。这使得大规模并行系统非常需要。但是,由于其非对称性和全球连接性,这对VLSI技术提出了重大挑战。由于其三维和全局连通性,光学似乎非常适合实现BdB网络。我们提出了光BdB网络的实现方法。所提出的实现方法的显着特征是将网络划分为几个可以有效实现的原始操作。我们通过提出BdB网络的光学实现,进一步展示了提出的设计方法的可行性。 [参考:48]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号