...
首页> 外文期刊>Nanoscale >Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions
【24h】

Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions

机译:磷化铁封装在p型石墨electrocatalyst碳高效和稳定氢和氧进化反应

获取原文
获取原文并翻译 | 示例

摘要

The development of durable and efficient non-noble electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is highly desirable but challenging for the commercialization of renewable energy systems. Herein, a facile strategy is developed for the synthesis of iron phosphide (FeP) nanoparticles protected with an overcoat of multifunctional P-doped graphitic carbon as a cost-effective electrocatalyst. The key point is the utilization of MOF-derived iron nanoparticles embedded in graphitic carbon (Fe@GC), which are synthesized via the pyrolysis of the Fe-MIL-88 template and subsequent phosphorization of Fe and simultaneous doping of P in carbon. Compared to the direct phosphorization of Fe-MIL-88, resulting in Fe2P on amorphous carbon (Fe2P@APC), this strategy gives easier access to phosphorization and P doping through pyrolysis temperature regulation. High-temperature pyrolysis can also yield the graphitic carbon encapsulated nanoparticle structure (FeP@GPC), which increases conductivity and prevents agglomeration as well as dissolution under harsh operating conditions, and thus contributes to enhanced activity and long-time stability. The optimized FeP@GPC exhibits superior activity compared to Fe2P/FeP@GPC and Fe2P@APC, which is attributed to the modified electronic structure of FeP due to its greater P proportion than Fe2P together with the strong synergy between the nanoparticles and graphitic carbon. In detail, FeP@GPC exhibits an ultralow overpotential of 72 mV and 278 mV to achieve the current density of 10 mA cm(-2) for the HER in acid and OER in alkaline media, respectively, together with negligible degradation after 20 h, which ranks among the best Fe-based electrocatalysts.
机译:持久和有效的非贵金属的发展electrocatalysts氢进化进化反应(她)和氧气反应(OER)是非常可取的但有挑战性的商业化的可再生能源系统。在此,一个灵巧的策略是发达的磷化铁的合成(聚全氟乙丙烯)纳米颗粒保护一个多功能的大衣作为一个具有成本效益的p型石墨碳electrocatalyst。MOF-derived铁纳米粒子嵌入石墨碳(Fe@GC),合成通过热解的fe - mil - 88模板和后续增磷铁和同步掺杂碳的P。磷化作用的fe - mil - 88,导致Fe2P无定形碳(Fe2P@APC),这一策略提供容易获得增磷和P通过热解温度调节掺杂。高温热解也可以产生石墨碳纳米颗粒封装结构(FeP@GPC),增加导电性,防止聚集以及解散在苛刻的操作条件下,因此有助于增强的活动和长期稳定。比Fe2P / FeP@GPC和优越的活动Fe2P@APC,归因于修改电子结构的聚全氟乙丙烯由于其更大的P比例比Fe2P一起坚强纳米颗粒与石墨之间的协同作用碳。过电压达到72 mV和278 mV电流密度的马10厘米(2)酸在碱性和OER媒体,分别一起微不足道的降解20 h后,跻身最佳Fe-basedelectrocatalysts。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号