首页> 外文期刊>Nanoscale >Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries
【24h】

Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries

机译:空心SnO2团簇与氧气空缺裹入的n型石墨烯网络健壮锂离子电池的负极材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The practical application of tin dioxide (SnO2) in lithium-ion batteries has been greatly hindered by its large volumetric expansion and low conductivity. Thus, a rational design of the size, geometry and the pore structure of SnO2-based nanomaterials is still a dire demand. To this end, herein we report an effective approach for engineering hollow-structured SnO2 nanospheres with adequate surface oxygen vacancies simultaneously wrapped by a nitrogen-doped graphene network (SnO2-x/N-rGO) through an electrostatic adsorption-induced self-assembly together with a thermal reduction process. The close electrostatic attraction achieved a tight and uniform combination of positively charged SnO2 nanospheres with negatively charged graphene oxide (GO), which can alleviate the aggregation and volume expansion of the entrapped SnO2 nanospheres. Subsequent thermal treatment not only ensures a significant reduction of the GO sheets accompanying nitrogen-doping, but also induces the generation of oxygen vacancies on the surface of the SnO2 hollow nanospheres, together building up a long-range and bicontinuous transfer channel for rapid electron and ion transport. Because of these structural merits, the as-built SnO2-x/N-rGO composite used as the anode material exhibits excellent robust cycling stability (approximate to 912 mA h g(-1) after 500 cycles at 0.5 A g(-1) and 652 mA h g(-1) after 200 cycles at 1 A g(-1)) and superior rate capability (309 mA h g(-1) at 10 A g(-1)). This facile fabrication strategy may pave the way for the construction of high performance SnO2-based anode materials for potential application in advanced lithium-ion batteries.
机译:二氧化锡的实际应用(SnO2)锂离子电池已经很大的妨碍通过其庞大的体积膨胀和低导电性。大小、几何和孔隙结构SnO2-based纳米材料仍然是一个可怕的需求。为此,我们在此报告一个有效方法工程hollow-structured SnO2团簇与足够的表面氧同时包装的空缺nitrogen-doped石墨烯网络(SnO2-x / N-rGO)通过一个静电adsorption-induced自组装在一起热减少的过程。严格的和统一的组合来实现带正电的SnO2团簇带负电荷的石墨烯氧化物(去)缓解的聚合和体积膨胀裹入SnO2的团簇。热处理不仅可以确保一个重要减少去表伴随nitrogen-doping,但也引发了一代人SnO2的表面氧的空缺建立一个中空的团簇,在一起远程和双连续的传输通道快速的电子和离子运输。这些结构的优点,竣工SnO2-x / N-rGO复合用作阳极材料展示优秀的健壮的循环稳定性(近似912毫安h g(1) 500年以后周期马在0.5 g(1)和652 h g(1) 200年之后周期1 g(1))和卓越的能力马(309 h g (1) 10 g(1))。制造策略可能铺平道路建设高绩效SnO2-based阳极在先进材料潜在的应用锂离子电池。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号