...
首页> 外文期刊>Nanoscale >Thermo-plasmonic gold nanofilms for simple and mass-producible photothermal neural interfaces
【24h】

Thermo-plasmonic gold nanofilms for simple and mass-producible photothermal neural interfaces

机译:Thermo-plasmonic黄金薄膜简单mass-producible光热光谱分析神经接口

获取原文
获取原文并翻译 | 示例

摘要

In recent years, photothermal stimulation methods using plasmonic metal nanoparticles have emerged as non-genetic optical techniques in neuromodulation. Although nanoparticle-based photothermal stimulation shows great potential in the excitation and the inhibition of neural activity, the complex synthesis processes of the nanoparticles and the lack of large-area deposition methods can be limiting factors for the development of photothermal neural devices. In this paper, we propose a plasmonic gold nanofilm, fabricated by a standard thermal evaporation process, as a simple and mass-producible photothermal neural interface layer for microelectrode array (MEA) chips. The absorption of the gold nanofilm at near infrared wavelengths is optimized to maximize the photothermal effect by varying the thickness and microstructure of the gold nanofilm. With the optimized conditions, a significantly strong photothermal effect is applied on MEAs without affecting the neural signal recording capability. Finally, primary rat hippocampal neuronal cultures are used to show that the photothermal neural inhibition using the gold nanofilm is as effective as that using the plasmonic nanoparticles. Due to the greater simplicity and versatility of the fabrication process, the plasmonic gold nanofilm can provide a promising solution for the mass production of photothermal platforms.
机译:近年来,光照刺激方法使用电浆金属纳米粒子已经出现随着非遗传性的光学技术神经调节。光照刺激显示巨大的潜力神经的兴奋和抑制活动的复杂的合成过程纳米颗粒和大面积的缺乏沉积方法可以限制因素光热光谱分析神经装置的发展。在本文中,我们提出一个电浆黄金nanofilm,编造一个标准的热蒸发的过程,作为一个简单的和mass-producible光热光谱分析神经接口层的微电极阵列(MEA)芯片。在近红外吸收的黄金nanofilm波长是最大化的优化通过不同厚度和光照效果黄金nanofilm微观结构改变的结果。优化条件,明显强劲光照效果应用于量影响神经信号记录功能。最后,主要的大鼠海马神经元文化是用来表明,光热光谱分析使用黄金nanofilm是神经抑制有效使用电浆纳米粒子。多功能性的制造过程中,电浆黄金nanofilm能够提供一种很有前途的解决光照的大规模生产平台。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号