首页> 外文期刊>Nanoscale >Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons
【24h】

Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons

机译:平面、窄带和可调光电探测基于非盟/二氧化钛nanodiodes近红外在塔姆等离子体

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

There is increasing interest in hot-electron photodetection due to the extended photoresponse well below the semiconductor band edge. However, the photoresponsivity is extremely low and the metallic nanostructures used to excite surface plasmons (SPs) for improved quantum yield are too complex for practical applications. Here, we show that by exciting Tamm plasmons (TPs), a planar device consisting of a thin metal film of 30 nm on a distributed Bragg reflector (DBR) can absorb similar to 93 of the incident light, resulting in a high hot-electron generation that is over 34-fold enhanced compared to that of the reference without the DBR. Besides, the electric field increases with the light penetration depth in the metal, leading to hot-electron generation that is strongly concentrated near the Schottky interface. As a result, the photoresponsivity can be over 30 (6) times larger than that of the reference (conventional grating system). Moreover, the planar device exhibits an easily tunable working wavelength from the visible to the near-infrared, sustained performance under oblique incidences, and a multiband photodetection functionality. The proposed strategy avoids the complicated fabrication of the metallic nanostructures, facilitating the compact, large-area, and low-cost photodetection, biosensing, and photocatalysis applications.
机译:有越来越多的热电子的兴趣光电探测由于扩展的光敏反应远低于半导体带边沿。photoresponsivity是极低的金属纳米结构用于激发表面等离子体(SPs)提高量子产率太复杂的实际应用。通过激动人心的塔姆等离子体(TPs),一个平面设备组成的30 nm的金属薄膜在分布式布拉格反射器(DBR)能吸收类似于93%的入射光,结果在一个高热电子发电,已经结束了34倍增强相比的没有DBR参考。场与光穿透深度增加在金属,导致热电子的一代这是强烈肖特基附近集中接口。超过30(6)倍的参考(传统的光栅系统)。此外,平面设备展览一个容易可调谐波长从可见到工作近红外,持续下的性能斜发生率和多波段光电探测功能。避免了复杂的制造策略金属纳米结构,方便紧凑、大面积、低成本的光电探测,若,光催化应用。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号