...
首页> 外文期刊>Nanoscale >Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge
【24h】

Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge

机译:血脑屏障的量化运输和神经毒性的未标记的微碳纳米管的表面电荷

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles capable of penetrating the blood-brain barrier (BBB) will greatly advance the delivery of therapies against brain disorders. Carbon nanotubes hold great potential as delivery vehicles due to their high aspect-ratio and cell-penetrating ability. Studies have shown multiwalled carbon nanotubes (MWCNT) cross the BBB, however they have largely relied on labelling methods to track and quantify transport, or on individual electron microscopy images to qualitatively assess transcytosis. Therefore, new direct and quantitative methods, using well-defined and unlabelled MWCNT, are needed to compare BBB translocation of different MWCNT types. Using highly controlled anionic (-), cationic (+) and non-ionic (0) functionalized MWCNT (fMWCNT), we correlate UV-visible spectroscopy with quantitative transmission electron microscopy, quantified from c. 270 endothelial cells, to examine cellular uptake, BBB transport and neurotoxicity of unlabelled fMWCNT. Our results demonstrate that: (i) a large fraction of cationic and non-ionic, but not anionic fMWCNT become trapped at the luminal brain endothelial cell membrane; (ii) despite high cell association, fMWCNT uptake by brain endothelial cells is low (<1.5% ID) and does not correlate with BBB translocation, (iii) anionic fMWCNT have highest transport levels across an in vitro model of the human BBB compared to non-ionic or cationic nanotubes; and (iv) fMWCNT are not toxic to hippocampal neurons at relevant abluminal concentrations; however, fMWCNT charge has an effect on carbon nanotube neurotoxicity at higher fMWCNT concentrations. This quantitative combination of microscopy and spectroscopy, with cellular assays, provides a crucial strategy to predict brain penetration efficiency and neurotoxicity of unlabelled MWCNT and other nanoparticle technologies relevant to human health.
机译:纳米粒子的穿透能力血脑屏障(BBB)将大大进步疗法对脑的交付障碍。作为运载工具由于其高长宽比和cell-penetrating能力。研究表明微碳纳米管(MWCNT)穿过BBB,然而他们在很大程度上依靠标签来跟踪和量化方法运输,或在单独的电子显微镜定性评估transcytosis图像。因此,新的直接和定量方法,使用定义良好的和未标记的MWCNT,需要比较不同的BBB易位MWCNT类型。阳离子(+)和非离子(0)功能化MWCNT (fMWCNT),我们与紫外可见光谱学与定量传输电子显微镜,从c。270年量化内皮细胞,检测细胞吸收,BBB运输和未标记的神经毒性fMWCNT。的阳离子和非离子,但不是阴离子fMWCNT被困在腔内大脑内皮细胞膜;高细胞协会fMWCNT被大脑吸收内皮细胞较低(< 1.5% ID)和不(3)阴离子与BBB易位fMWCNT运输水平最高相比人类BBB的体外模型非离子、阳离子纳米管;不是有毒的海马神经元在有关吗abluminal浓度;会影响碳纳米管神经毒性fMWCNT浓度高。显微镜和光谱学、细胞分析,提供了一个至关重要的战略预测大脑效率和渗透神经毒性的未标记的MWCNT和其他纳米技术与人类有关健康。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号