...
首页> 外文期刊>Nanoscale >Direct cation exchange of CdSe nanocrystals into ZnSe enabled by controlled binding between guest cations and organic ligands
【24h】

Direct cation exchange of CdSe nanocrystals into ZnSe enabled by controlled binding between guest cations and organic ligands

机译:直接阳离子交换CdSe纳米晶体通过控制奈米之间的绑定的客人阳离子和有机配体

获取原文
获取原文并翻译 | 示例

摘要

Zn chalcogenides are suitable candidates for blue-emitting fluorophores in light-emitting devices. In particular, the efforts to grow ZnSe nanocrystals (NCs) with fine control over size and shape via bottom-up approaches have faced challenges because of the slow decomposition of Zn precursors. In this study, we report direct cation exchange from CdSe NCs to ZnSe. Absorption spectroscopy and density functional theory (DFT) analysis reveal that the reactivity of cation exchange depends on the degree of complexation between organic ligands and Zn halides. We controlled the binding strength of Zn complexes by changing the organic ligands and halogen species that bind with Zn. Appropriate binding strength allows for the release of Zn ions and their facile incorporation into CdSe seed NCs. Under our experimental conditions, trioctylphosphine oxide (TOPO)-ZnI2 drives the efficient cation exchange reaction whereas TOPO-ZnCl2 induces no cation exchange of CdSe NCs. In addition, functional groups vary the binding strength between Zn and ligands. Oleylamine (OLAm)-ZnI2, which has a weaker ligand-ZnI2 binding than TOPO-ZnI2, breaks down the original morphologies of host CdSe NCs due to the very fast exchange rate. On the other hand, the TOPO-ZnI2 complex induces a mild exchange rate, leading to transformation into various morphologies such as CdSe nanorods (NRs) and nanoplatelets (NPLs) into CdSe/ZnSe heterostructures inaccessible via other synthesis methods. The incorporation of Zn into various morphologies of CdSe results in tunable optical transitions in blue-UV regions. The synthesis of heterostructured NCs in an elongated morphology is possible, opening opportunities in photocatalysis, light emitting diodes, and luminescent solar concentrators.
机译:锌硫属化合物是合适的候选人blue-emitting荧光团在发光设备。纳米晶体(nc)和精细控制大小通过自底向上的方法面临和形状挑战,因为的缓慢分解锌前驱。阳离子交换从CdSe nc奈米。光谱和密度泛函理论(DFT)分析表明,阳离子的反应性交换取决于程度的络合有机配体与锌卤化物。锌配合物的结合强度控制通过改变有机配体和卤素物种与锌结合。允许锌离子的释放和力量他们的肤浅并入CdSe种子nc。在我们的实验条件下,三辛基氧化(威尼斯平底渔船)-ZnI2驱动而高效阳离子交换反应TOPO-ZnCl2诱发没有CdSe的阳离子交换nc。锌和配体之间的结合强度。油酰胺(OLAm) -ZnI2,弱比TOPO-ZnI2 ligand-ZnI2绑定,分解主机的原始形态CdSe nc由于非常快的汇率。TOPO-ZnI2复杂导致轻微的交换率,导致转换成不同的形态如CdSe纳米棒(NRs)和nanoplatelets(不良贷款)CdSe /奈米异质结构无法通过其他合成方法。在可调光学CdSe形态的结果在紫外区域的转换。用nc在一个细长的形态是可能的,开放的机会吗光催化、发光二极管和发光的太阳能集中器。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号