...
首页> 外文期刊>Aquaculture >Systems engineering for ornamental fish production in a recirculating aquaculture system.
【24h】

Systems engineering for ornamental fish production in a recirculating aquaculture system.

机译:循环水产养殖系统中观赏鱼生产的系统工程。

获取原文
获取原文并翻译 | 示例
           

摘要

The aim was to develop a simulation model for determining the optimal layout and management regime for ornamental fish recirculating aquaculture system (ORAS). The work plan involved: (1) quantifying the effects of fish growth rates, the nature of the products, and the management practices; (2) developing a mathematical simulation model of the ORAS, taking into account all factors that directly influence system profitability; and (3) maximizing the production level attainable with the existing facilities and within the prevailing costs, thus raising the profitability of the ORAS. The resulting model is process-oriented; it follows the flow of fish through the ORAS facility and generates an animated graphic representation of the processes through which the fish pass as they progress through the system. The model enables a user to anticipate how system profitability would be affected by changes in: design, operating practices, costs of inputs, and/or prices of products. A step-by-step approach was taken in designing an optimal RAS that both met marketing demand and conformed with stocking-density limits. Optimal design specifications were presented for several case studies based on data from an ORAS in Kibbutz Hazorea, Israel where koi (Cyprinus carpio) are raised in a recirculating system. The addition of one reproduction cycle per year reduced the maximum biomass load from 8 to 5 ton. The addition of two reproductions per year would enable the system to process an additional 1 million fingerlings per year, elevating sales by 60% without changing the biomass load. If the waste rate could be reduced from 80 to 44% while processing the same number of fingerlings, sales could be increased by a factor of 3 without exceeding the biofilter limits. If the final koi size were to be reduced from 50 to 25 cm, the number of fingerlings could be doubled (to 5 million) while maintaining the existing low biomass load. Alternatively, purchasing larger fingerlings (4.5 instead of 0.1 g) might cause the biomass load to exceed the filter limitation (14 compared with 7.4 ton). Further research should include more extensive testing and validation of the integrated model, which then could be disseminated within the aquacultural community..
机译:目的是开发一种仿真模型,以确定观赏鱼再循环水产养殖系统(ORAS)的最佳布局和管理制度。工作计划包括:(1)量化鱼类生长速度,产品性质和管理方法的影响; (2)考虑所有直接影响系统盈利能力的因素,开发ORAS的数学仿真模型; (3)在现有成本的前提下,使现有设施可达到的生产水平最大化,从而提高ORAS的盈利能力。最终的模型是面向过程的;它跟踪通过ORAS设施的鱼流,并生成动画图形表示鱼在系统中前进时所经过的过程。该模型使用户可以预期系统利润将受到以下方面的变化的影响:设计,操作实践,投入成本和/或产品价格。在设计既能满足市场需求又符合存货密度限制的最佳RAS时,采用了分步方法。基于来自以色列Kibbutz Hazorea的ORAS的数据,提出了一些案例研究的最佳设计规格,在该系统中,在循环系统中饲养了锦鲤(鲤)。每年增加一个繁殖周期,将最大生物量负荷从8吨减少到5吨。每年增加两次复制,可使系统每年处理额外的100万种鱼种,在不改变生物质负荷的情况下将销售提高60%。如果在处理相同数量的鱼种时废品率可以从80%降低到44%,则销售量可以增加3倍,而不会超出生物过滤器的限制。如果将最终的锦鲤尺寸从50厘米减小到25厘米,则鱼种数量可以增加一倍(至500万个),同时保持现有的低生物量负荷。或者,购买较大的鱼种(4.5而不是0.1 g)可能导致生物量负荷超过过滤器限制(14吨,而7.4吨)。进一步的研究应包括对集成模型的更广泛的测试和验证,然后可以在水产养殖社区中进行传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号