首页> 外文期刊>Arabian journal of geosciences >Prediction of geohydraulic pore pressure gradient differentials for hydrodynamic assessment of hydrogeological units using geophysical and laboratory techniques: a case study of the coastal sector of Akwa Ibom State, Southern Nigeria
【24h】

Prediction of geohydraulic pore pressure gradient differentials for hydrodynamic assessment of hydrogeological units using geophysical and laboratory techniques: a case study of the coastal sector of Akwa Ibom State, Southern Nigeria

机译:利用地球物理和实验室技术预测用于水文地质单元水动力评估的地压孔隙压力梯度差异:以尼日利亚南部阿夸伊博姆州沿海地区为例

获取原文
获取原文并翻译 | 示例
           

摘要

We used borehole-constrained geophysical measurements and laboratory analyses of water samples and hydrogeological unit samples to estimate the basic petrophysical parameters required in the Kozeny-Carman-Bear's equation. This led to the estimation of hydraulic conductivity, permeability and tortuosity. The evaluation of hydraulic pressure gradient differential and the hydraulic pressure differential was possible through Darcy's law. Our main objective was to assess the effect of hydraulic pressure gradient differential and that of the hydraulic pressure differential on the hydrodynamic coefficients of economically hydrogeologic units of the study area. The specific constants of water such as density, dynamic viscosity and acceleration due to gravity were all employed in estimating some of the parameters as required in the empirical relations used. Graphical relations were used to predict the generic behaviour between permeability and its dependence, and hydraulic pressure gradient and hydraulic pressure differentials respectively. The results of our analyses show that in arenaceous hydrogeologic units like sands characterised by interconnected/communicating pores, hydraulic pressure differential will be high as the thickness of the saturated unit increases-the precondition for high hydrodynamic activity in the saturated medium. Again, in argillaceous materials, the hydraulic pressure gradient differential is high as it is caused by poor geofluid thickness penetration due to little or no communication between pores. This reduces the hydrodynamic coefficients like porosity and permeability in such hydrogeologic units. The observation of these hydraulic energy parameters in hydrogeologic units could be the physical basis for predicting groundwater flow and a guide to designing geofluid flow modelling programmes in saturated subsurface.
机译:我们使用了受井眼约束的地球物理测量结果以及水样和水文地质单位样品的实验室分析来估算Kozeny-Carman-Bear方程所需的基本岩石物理参数。这导致了对水力传导率,渗透率和曲折度的估计。通过达西定律可以对液压梯度差和液压差进行评估。我们的主要目的是评估液压梯度差和液压差对研究区域经济水文地质单位水动力系数的影响。在估算所用经验关系中所需的某些参数时,都采用了水的比常数,例如密度,动态粘度和重力引力。图形关系用于预测渗透率及其相关性,液压梯度和液压差之间的一般行为。我们的分析结果表明,在具有连通/连通孔隙特征的砂质砂质水文地质单元中,随着饱和单元厚度的增加,水压差会很高,这是在饱和介质中进行高水动力活动的前提。再次,在泥质材料中,液压梯度差很高,这是由于孔隙之间很少或没有连通而导致的不良流体渗入厚度引起的。这降低了这种水文地质单元中的流体力学系数,例如孔隙率和渗透率。在水文地质单元中对这些水力能参数的观测可能是预测地下水流量的物理基础,并且可以为设计饱和地下地下水流建模程序提供指导。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号