...
首页> 外文期刊>Materials Chemistry Frontiers >Preferred coordination of polymers at MOFs enables improved lithium-ion battery anode performance
【24h】

Preferred coordination of polymers at MOFs enables improved lithium-ion battery anode performance

机译:首选的协调在财政部使聚合物改善锂离子电池阳极性能

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-ion batteries (LIBs) are widely used energy storage devices due to their low maintenance cost, constant voltage, and high energy density. However, the low coulombic efficiency caused by the side reactions hinders the revival of LIBs. In this work, a facile suspension polymerization method is used to coordinate a linear chain poly[(dimethylsilylene)diacetylene] at ZIF-8, followed by pyrolysis to achieve a controlled architecture of hybrid silicon oxycarbide coated zinc oxide carbon (ZnO–C@SiOC) nanocomposite and improve the poor performance of ZnO–C anode. Notably, the SiOC network generated within an amorphous and stabilized sp2-network not only improves conductivity and active sites but also coordinates with a confined ZnO–C. The confined ZnO–C porous nanoclusters are directly intercalating with the polymer's diacetylene units and alkynyl groups, resulting in an enlarged surface for fast lithium-ion accommodation (8.935 × 10−11 cm−2 s−1) and short ionic diffusion. The ZnO–C@SiOC anode exhibits high reversible capacities of ∼940 mA h g−1 after 430 cycles at 0.1 A g−1 (corresponding to an areal capacity of 2.5 mA h cm−2) and ∼472 mA h g−1 at 0.8 A g−1 with a mass loading of 2.8 mg cm−2. The ultra-fast ability of the ZnO–C@SiOC nanocomposite in a half-cell allows short ionic diffusion and rapid electron transportation, with an extrinsic charge storage pseudocapacitive contribution of 64.16% and a diffusion contribution of 35.86% at 0.4 mV s−1. Furthermore, the ZnO–C@SiOC anode is coupled with a LiFePO4 cathode to assemble a full cell capable of retaining ∼388 mA h g−1 capacity over 180 cycles.
机译:锂离子电池(LIBs)被广泛使用能源存储设备由于其低维护成本、恒压和高能量密度。效率副反应所造成的阻碍填词的复兴。悬浮聚合方法协调一个线性链·保利[(dimethylsilylene) diacetylene] at ZIF-8,其次是热解实现控制架构的混合硅碳氧化物涂层氧化锌(ZnO-C@SiOC)纳米复合材料和碳改善穷人ZnO-C阳极的性能。值得注意的是,SiOC网络内生成非晶和稳定sp2-network不仅网站还提高电导率和活跃关ZnO-C坐标。ZnO-C多孔纳米束直接再与聚合物的丁二炔单位和炔基组,导致一个扩大表面快速锂离子住宿(8.935×10−11厘米−2 s−1)和短离子扩散。马高可逆容量∼940 h g−1430个周期为0.1 g−1(对应于一个面积capacity of 2。5 mA h cm−2)和∼472 mA h0.8 g−1 g−1质量负载为2.8毫克厘米−2。纳米复合材料的半电池允许短的离子扩散和快速电子运输,一个外在pseudocapacitive电荷存储贡献了64.16%和扩散0.4 mV s−1贡献了35.86%。此外,再加上ZnO-C@SiOC阳极磷酸铁锂阴极组装完整的细胞的能力保留∼388 mA h g−1产能超过180周期。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号