...
首页> 外文期刊>Aquatic geochemistry >Kinetics of the reactions of water, hydroxide ion and sulfide species with CO2, OCS and CS2: Frontier molecular orbital considerations
【24h】

Kinetics of the reactions of water, hydroxide ion and sulfide species with CO2, OCS and CS2: Frontier molecular orbital considerations

机译:水,氢氧根离子和硫化物与CO2,OCS和CS2的反应动力学:前沿分子轨道考虑因素

获取原文
获取原文并翻译 | 示例

摘要

The kinetics of the reactions of water, hydroxide ion and sulfide species with CO2, OCS and CS2 are investigated using the molecular orbital approach and available kinetic data. Although these reactions are symmetry allowed, the lowest unoccupied molecular orbital (LUMO) for CO2 is a poor electron accepting orbital as it has a positive potential energy. At low pH, hydration of CO2 requires that the waters interact with CO2 via hydrogen bonding for subsequent formation of H2CO3 in an effort to overcome the high energy of activation. These factors are significant for the slow kinetics of hydration and the persistence of CO2 in water. The reaction of hydroxide ion with CO2 has a much smaller energy of activation. For the isoelectronic species OCS and CS2, their LUMO orbitals are good electron acceptor orbitals, and the energy of activation is less than that for the corresponding CO2 reactions. The LUMO orbitals for OCS and CS2 have less carbon character whereas the LUMO for CO2 has more carbon character. The relative rates of these reactions (CO2>OCS>CS2) reflect the increased carbon character of the pi* LUMO orbital for CO2 over CS2 and the fact that the LUMO for OCS is sigma*, which when filled can readily break the CAS bond leading to sulfide (even though the C character of the LUMO is less than those for CO2 and CS2). Also, the higher hydrogen bonding interactions with nearest water molecules is in the order CO2>OCS>CS2 indicating that hydrolysis via water catalysis is retarded as the number of S atoms increases. Solid phase FeS has a highest occupied molecular orbital (HOMO) with a potential energy similar to that of CO2 and can activate (or bond with) the carbon atom in CO2 so that organic compounds can be produced under hydrothermal vent conditions.
机译:使用分子轨道方法和现有的动力学数据,研究了水,氢氧根离子和硫化物与CO2,OCS和CS2的反应动力学。尽管可以对称地进行这些反应,但CO2的最低未占据分子轨道(LUMO)具有较弱的电子接​​受轨道,因为它具有正势能。在低pH值下,CO2的水合作用要求水通过氢键与CO2相互作用以形成H2CO3,以克服高活化能。这些因素对于缓慢的水合动力学和水中的CO2持续存在很重要。氢氧根离子与CO2的反应具有较小的活化能。对于等电子物种OCS和CS2,它们的LUMO轨道是良好的电子受体轨道,其活化能小于相应的CO2反应的活化能。 OCS和CS2的LUMO轨道具有较低的碳特征,而CO2的LUMO轨道具有较高的碳特征。这些反应的相对速率(CO2> OCS> CS2)反映了CO2的pi * LUMO轨道的碳特性比CS2高,并且反映了OCS的LUMO是sigma *的事实,当填充时,它很容易破坏CAS键的导联生成硫化物(即使LUMO的C特性小于CO2和CS2的C特性)。而且,与最近的水分子的更高的氢键相互作用为CO 2> OCS> CS 2的次序,表明随着S原子数的增加,经由水催化的水解被延迟。固相FeS具有最高的占据分子轨道(HOMO),其势能与CO2相似,并且可以激活(或与之结合)CO2中的碳原子,因此可以在水热排放条件下生产有机化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号