首页> 外文期刊>Antimicrobial agents and chemotherapy. >Predicting in vitro antibacterial efficacy across experimental designs with a semimechanistic pharmacokinetic-pharmacodynamic model.
【24h】

Predicting in vitro antibacterial efficacy across experimental designs with a semimechanistic pharmacokinetic-pharmacodynamic model.

机译:使用半力学药代动力学-药效学模型预测整个实验设计的体外抗菌功效。

获取原文
获取原文并翻译 | 示例
           

摘要

We have previously described a general semimechanistic pharmacokinetic-pharmacodynamic (PKPD) model that successfully characterized the time course of antibacterial effects seen in bacterial cultures when exposed to static concentrations of five antibacterial agents of different classes. In this PKPD model, the total bacterial population was divided into two subpopulations, one growing drug-susceptible population and one resting drug-insensitive population. The drug effect was included as an increase in the killing rate of the drug-susceptible bacteria with a maximum-effect (E(max)) model. The aim of the present study was to evaluate the ability of this PKPD model to describe and predict data from in vitro experiments with dynamic concentration-time profiles. Dynamic time-kill curve experiments were performed by using an in vitro kinetic system, where cultures of Streptococcus pyogenes were exposed to benzylpenicillin, cefuroxime, erythromycin, moxifloxacin, or vancomycin using different starting concentrations (2 and 16 times the MIC) and elimination conditions (human half-life, reduced half-life, and constant concentrations). The PKPD model was applied, and the observations for the static as well as dynamic experiments were compared to model predictions based on parameter estimation using (i) static data, (ii) dynamic data, and (iii) combined static and dynamic data. Differences in experimental settings between static and dynamic experiments did not affect the growth kinetics of the bacteria significantly. With parameter reestimation, the structure of our previously proposed PKPD model could well characterize the bacterial growth and killing kinetics when exposed to dynamic concentrations with different elimination rates of all five investigated antibiotics. Furthermore, the model with parameter estimates based on data from only the static time-kill curve experiments could predict the majority of the time-kill curves from the dynamic experiments reasonably well. Adding data from dynamic experiments in the estimation improved the model fit for cefuroxime and vancomycin, indicating some differences in sensitivity to experimental conditions among the antibiotics studied.
机译:我们之前已经描述了一种一般的半机械药代动力学-药效学(PKPD)模型,该模型成功地表征了当暴露于静态浓度的五种不同种类的抗菌剂时细菌培养物中所见抗菌作用的时间过程。在此PKPD模型中,细菌总数被分为两个亚群,一个是对药物敏感的生长种群,另一个是对药物不敏感的静止种群。具有最大效应(E(max))模型的药物作用包括为药物敏感性细菌的杀灭率增加。本研究的目的是评估该PKPD模型描述和预测具有动态浓度-时间曲线的体外实验数据的能力。通过使用体外动力学系统进行动态时间杀伤曲线实验,其中化脓链球菌的培养物使用不同的起始浓度(MIC的2倍和16倍)和消除条件(人的半衰期,降低的半衰期和恒定的浓度)。应用了PKPD模型,并将静态和动态实验的观察结果与基于参数估计的模型预测进行了比较,这些参数估计使用的是(i)静态数据,(ii)动态数据和(iii)静态和动态数据组合。静态和动态实验之间实验设置的差异不会显着影响细菌的生长动力学。通过参数重估,我们先前提出的PKPD模型的结构可以很好地表征当暴露于动态浓度且所有五种研究的抗生素的消除率不同时的细菌生长和杀灭动力学。此外,仅基于静态时间杀伤曲线实验数据的带有参数估计值的模型可以合理地预测来自动态实验的大多数时间杀伤曲线。在估算中添加动态实验数据可以改善头孢呋辛和万古霉素的模型拟合度,这表明所研究的抗生素对实验条件的敏感性存在一些差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号