...
首页> 外文期刊>Antioxidants and redox signalling >Hydrogen peroxide and nitric oxide: Key regulators of the legume - Rhizobium and mycorrhizal symbioses
【24h】

Hydrogen peroxide and nitric oxide: Key regulators of the legume - Rhizobium and mycorrhizal symbioses

机译:过氧化氢和一氧化氮:豆类的主要调节剂-根瘤菌和菌根共生酶

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Significance: During the Legume-Rhizobium symbiosis, hydrogen peroxide (H2O2) and nitric oxide (NO) appear to play an important signaling role in the establishment and the functioning of this interaction. Modifications of the levels of these reactive species in both partners impair either the development of the nodules (new root organs formed on the interaction) or their N2-fixing activity. Recent Advances: NADPH oxidases (Noxs) have been recently described as major sources of H 2O2 production, via superoxide anion dismutation, during symbiosis. Nitrate reductases (NR) and electron transfer chains from both partners were found to significantly contribute to NO production in N 2-fixing nodules. Both S-sulfenylated and S-nitrosylated proteins have been detected during early interaction and in functioning nodules, linking reactive oxygen species (ROS)/NO production to redox-based protein regulation. NO was also found to play a metabolic role in nodule energy metabolism. Critical Issues: H2O2 may control the infection process and the subsequent bacterial differentiation into the symbiotic form. NO is required for an optimal establishment of symbiosis and appears to be a key player in nodule senescence. Future Directions: A challenging question is to define more precisely when and where reactive species are generated and to develop adapted tools to detect their production in vivo. To investigate the role of Noxs and NRs in the production of H2O2 and NO, respectively, the use of mutants under the control of organ-specific promoters will be of crucial interest. The balance between ROS and NO production appears to be a key point to understand the redox regulation of symbiosis.
机译:意义:在豆科植物-根瘤菌共生期间,过氧化氢(H2O2)和一氧化氮(NO)似乎在这种相互作用的建立和功能中起着重要的信号作用。两个伙伴中这些反应性物种水平的改变会损害结核的形成(在相互作用中形成新的根器官)或其固氮活性。最新进展:NADPH氧化酶(Noxs)最近已被描述为共生过程中通过超氧阴离子歧化产生H 2O2的主要来源。发现两个伙伴的硝酸盐还原酶(NR)和电子转移链对固定N 2的结核中的NO产生有显着贡献。在早期相互作用和功能性结节中都检测到了S-亚磺酰化和S-亚氨酰化的蛋白质,从而将活性氧(ROS)/ NO的产生与基于氧化还原的蛋白质调节联系起来。还发现NO在结节能量代谢中起代谢作用。关键问题:H2O2可能控制感染过程以及随后的细菌分化为共生形式。最佳建立共生不需要NO,并且NO在结节衰老中起关键作用。未来方向:一个具有挑战性的问题是更精确地定义何时何地生成反应性物种,并开发适用的工具来检测其体内生成。为了研究NOx和NRs分别在H2O2和NO产生中的作用,在器官特异性启动子控制下使用突变体将是至关重要的。 ROS和NO产生之间的平衡似乎是了解共生氧化还原调节的关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号