...
首页> 外文期刊>Nanoscale >Assembling of Bi atoms on TiO2 nanorods boosts photoelectrochemical water splitting of semiconductors
【24h】

Assembling of Bi atoms on TiO2 nanorods boosts photoelectrochemical water splitting of semiconductors

机译:二氧化钛纳米棒组装的Bi原子增加光电化学分解水的半导体

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low photoconversion efficiency, high charge transfer resistance and fast recombination rate are the bottlenecks of semiconductor nanomaterials in photoelectrochemical (PEC) water splitting, where the introduction of an appropriate co-catalyst is an effective strategy to improve their performance. In the present study, we have purposely designed atomic-scale dispersed bismuth (Bi) assembled on titanium dioxide nanorods (TiO2), and demonstrated its effective role as a co-catalyst in enhancing the PEC water splitting performance of TiO2. As a result, functionalized Bi/TiO2 generates a high photocurrent intensity at 1.23 V-RHE under simulated solar light irradiation, which is 4-fold higher than that of pristine TiO2, exhibiting a significantly improved PEC performance for water splitting. The strategy presented in this study opens a new window for the construction of non-precious metals dispersed at atomic scales as efficient co-catalysts for realizing sustainable solar energy-driven energy conversion and storage.
机译:photoconversion效率低、高电荷转移阻力和快速重组率是半导体的瓶颈纳米材料在光电化学(压电)水引入一个分裂适当co-catalyst是一种有效的策略改善他们的表现。研究中,我们特意设计量子分散的铋钛(Bi)组装二氧化碳纳米棒(二氧化钛),并证明了它作为提高co-catalyst有效作用压电陶瓷水分裂二氧化钛的性能。因此,功能化Bi /二氧化钛生成一个高在1.23 V-RHE光电流强度模拟太阳光线照射,这是4倍高于原始二氧化钛,表现出显著改善压电陶瓷光解水制氢研究的性能。提出了研究打开一个新的窗口建设non-precious金属分散在原子尺度上co-catalysts一样有效实现可持续的太阳能能源驱动能源转换和存储。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号