首页> 外文期刊>Nanoscale >Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS2 hybrid-dimensional van der Waals heterostructure
【24h】

Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS2 hybrid-dimensional van der Waals heterostructure

机译:硬件实现的光电的调节树突的算术和spike-timing-dependent可塑性的启用ion-coupling gate-tunable垂直0D-perovskite / 2D-MoS2 hybrid-dimensional van der瓦尔斯异质结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Brain-inspired nanodevices have been demonstrated to possess outstanding characteristics for implementing neuromorphic computing. Among these devices, photoelectrically modulated neuromorphic transistors are regarded as the basic building blocks for applications in emerging brain-like devices. However, to date, efficient optoelectronic-hybrid neuromorphic devices are still lacking. Because conventional transistors based on mono-semiconductor materials cannot absorb adequate light to ensure efficient light-matter interactions, they pose significant challenges to the synchronous processing of photoelectric information. Here, a novel photoelectrically modulated neuromorphic device based on an ion-coupling gate-tunable vertical 0D-CsPbBr3-quantum-dots/2D-MoS2 hybrid-dimensional van der Waals heterojunction is demonstrated by using a polymer ion gel electrolyte as the gate dielectric. A super-efficient heterojunction interface for photo-carrier transport is developed by integrating CsPbBr3 quantum dots with 2D-layered MoS2 semiconductors. We experimentally demonstrate that the drain-source current can be modulated by applying spikes to the drain and gate terminals, and the conductance can also be tuned by external light stimulus. Most importantly, photoelectrically modulated spiking Boolean logics, dendritic integrations in both temporal and spatial modes, and Hebbian learning rules can be successfully mimicked in our proposed hybrid-dimensional device using this intriguing optical and electrical synergy approach. These results suggest that the proposed device has great potential in intelligent cognitive systems and neuromorphic computing applications.
机译:Brain-inspired nanodevices已经证明拥有杰出的特征实现神经形态计算。设备,光电的调制神经形态晶体管被视为基本的建筑块在新兴应用程序类人脑设备。optoelectronic-hybrid神经形态设备仍然缺乏。基于mono-semiconductor材料不能吸收足够的光来确保效率件轻松事交互,构成意义重大挑战的同步处理光电信息。光电的调制神经形态设备基于一个ion-coupling gate-tunable垂直的0D-CsPbBr3-quantum-dots / 2D-MoS2hybrid-dimensional范德瓦耳斯异质结证明了使用聚合物离子凝胶电解质作为闸极介电层。高效异质结界面photo-carrier运输是由将CsPbBr3量子点与2 d层二硫化钼半导体。证明漏源极电流通过应用峰值排水和调制门码头,电导也可以调光由外部刺激。重要的是,光电的调制飙升布尔逻辑,树突集成两种时间和空间模式,和Hebbian学习在我们的规则可以成功地模仿提出hybrid-dimensional设备使用这个有趣的光学和电子协同作用的方法。设备在智能也有巨大的潜力认知系统和神经形态计算应用程序。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号